HOMEWORK 5 (18.315, FALL 2005)

1) In the Eventown, there are $2 n$ people and m clubs A_{1}, \ldots, A_{m} such that $\left|A_{i}\right|$ and $\left|A_{i} \cap A_{j}\right|$ are even, for all $1 \leq i, j \leq m$. Prove that $m \leq 2^{n}$.
2) Compute the probability that a random permutation $\sigma \in S_{n}$ is an involution: $\sigma^{2}=1$. Compute the probability that two random permutations $\sigma, \omega \in S_{n}$ commute: $\sigma \omega=\omega \sigma$. Which event is more likely?
3) Try to classify all finite connected planar vertex-transitive graphs. (If you can't find all of them - explain clearly what subclass of them you can classify.)
4) Prove or disprove the following result: Every plane triangulation without separating triangles contains a Hamiltonian cycle. Here a triangle is called separating if it is a triangle in a graph but not a face.

Important: If you can't figure this out on your own, try to read Whitney's article (see the web page).

