HOMEWORK 3 (18.315, FALL 2005)

1) Decide whether a rectangle [50×60] can be tiles with rectangles
a) $[20 \times 15]$
b) $[5 \times 8]$
c) $[6.25 \times 15]$
d) $[2-\sqrt{2} \times 2+\sqrt{2}]$
$e)$ Find and prove a general criterion for tileability of a rectangle $[a \times b]$ with rectangular tiles $[p \times q]$.
2) Let u_{n} be the number of alternating permutations $\sigma \in S_{n}$, i.e. permutations with $\sigma(1)<$ $\sigma(2)>\sigma(3)<\ldots$ Prove that the circled numbers in the following Pascal-style triangle are u_{n}. Here each number is the sum of two: one from above and one in the same row in the direction of 0 .

Figure 1. Triangle to compute numbers u_{n}.
3) Let $T_{n}(x, y)$ be the Tutte polynomial of K_{n}. Prove that $u_{n}=\left|T_{n+1}(1,-1)\right|$.
4) In a spanning tree $t \in K_{n}$ we say that vertices i and j form an inversion if $i<j$ and j lies on the shortest path from i to 1 . Let $\operatorname{inv}(t)$ be the number of inversions in t. Define

$$
f_{n}(q)=\sum_{t \in K_{n}} q^{\operatorname{inv}(t)}
$$

Express $f_{n}(q)$ via $T_{n}(1, y)$.
5) Let P_{n} be a polytope in \mathbb{R}^{d} defined by inequalities $x_{i} \geq 0,1 \leq i \leq n$, and

$$
x_{i}+x_{i+1} \leq 1, \quad 1 \leq i<n .
$$

a) Compute the number of integer points in P_{n} (Hint: find a classical combinatorial interpretation).
b) Compute the volume of P_{n}
(Hint: find a combinatorial interpretation in terms of u_{n}.)
c) Give a combinatorial interpretation for the number of integer points in $k \cdot P_{n}$, generalizing part b). Here $k \cdot X=\{k \cdot x \mid x \in X\}$, and $k \in \mathbb{N}$.
6) Ex. 70 on p. 177 in Bollobas, MGT.

Please remember to write the name(s) of your collaborators (see collaboration policy).

