HOMEWORK 3 (18.315, FALL 2005)

- 1) Decide whether a rectangle $[50 \times 60]$ can be tiles with rectangles
 - a) $[20 \times 15]$
- b) $[5 \times 8]$
- c) $[6.25 \times 15]$
- d) $[2 \sqrt{2} \times 2 + \sqrt{2}]$
- e) Find and prove a general criterion for tileability of a rectangle $[a \times b]$ with rectangular tiles $[p \times q]$.
- 2) Let u_n be the number of alternating permutations $\sigma \in S_n$, i.e. permutations with $\sigma(1) < \sigma(2) > \sigma(3) < \ldots$ Prove that the circled numbers in the following Pascal-style triangle are u_n . Here each number is the sum of two: one from above and one in the same row in the direction of 0.

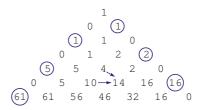


FIGURE 1. Triangle to compute numbers u_n .

- 3) Let $T_n(x,y)$ be the Tutte polynomial of K_n . Prove that $u_n = |T_{n+1}(1,-1)|$.
- 4) In a spanning tree $t \in K_n$ we say that vertices i and j form an *inversion* if i < j and j lies on the shortest path from i to 1. Let inv(t) be the number of inversions in t. Define

$$f_n(q) = \sum_{t \in K_n} q^{\text{inv}(t)}$$

Express $f_n(q)$ via $T_n(1,y)$.

5) Let P_n be a polytope in \mathbb{R}^d defined by inequalities $x_i \geq 0, 1 \leq i \leq n$, and

$$x_i + x_{i+1} \le 1, \quad 1 \le i < n.$$

- a) Compute the number of integer points in P_n (*Hint:* find a classical combinatorial interpretation).
- b) Compute the volume of P_n

(*Hint:* find a combinatorial interpretation in terms of u_n .)

- c) Give a combinatorial interpretation for the number of integer points in $k \cdot P_n$, generalizing part b). Here $k \cdot X = \{k \cdot x \mid x \in X\}$, and $k \in \mathbb{N}$.
- 6) Ex. 70 on p. 177 in *Bollobas*, MGT.

Please remember to write the name(s) of your collaborators (see collaboration policy).