Exercises 6

(1) Let \mathcal{A} be a central arrangement in \mathbb{R}^{n} with distance enumerator $D_{\mathcal{A}}(t)$ (with respect to some base region $\left.R_{0}\right)$. Define a graph $G_{\mathcal{A}}$ on the vertex set $\mathcal{R}(\mathcal{A})$ by putting an edge between R and R^{\prime} if $\# \operatorname{sep}\left(R, R^{\prime}\right)=1$ (i.e., R and R^{\prime} are separated by a unique hyperplane).
(a) $[2-]$ Show that $G_{\mathcal{A}}$ is a bipartite graph.
(b) [2] Show that if $\# \mathcal{A}$ is odd, then $D_{\mathcal{A}}(-1)=0$.
(c) [2] Show that if $\# \mathcal{A}$ is even and $r(\mathcal{A}) \equiv 2(\bmod 4)$, then $D_{\mathcal{A}}(-1) \equiv 2($ $\bmod 4)\left(\right.$ so $\left.D_{\mathcal{A}}(-1) \neq 0\right)$.
(d) [2] Give an example of (c), i.e., find \mathcal{A} so that $\# \mathcal{A}$ is even and $r(\mathcal{A}) \equiv 2($ $\bmod 4)$.
(e) [2] Show that (c) cannot hold if \mathcal{A} is supersolvable. (It is not assumed that the base region R_{0} is canonical. Try to avoid the use of Section 1.6.4.)
(f) $[2+]$ Show that if $\# \mathcal{A}$ is even and $r(\mathcal{A}) \equiv 0(\bmod 4)$, then it is possible for $D_{\mathcal{A}}(-1)=0$ and for $D_{\mathcal{A}}(-1) \neq 0$. Can examples be found for $\operatorname{rank}(\mathcal{A}) \leq 3$?
(2) [2-] Show that a sequence $\left(c_{1}, \ldots, c_{n}\right) \in \mathbb{N}^{n}$ is the inversion sequence of a permutation $w \in \mathfrak{S}_{n}$ if and only if $c_{i} \leq i-1$ for $1 \leq i \leq n$.
(3) [2] Show that all cars can park under the scenario following Definition 1.1 if and only if the sequence $\left(a_{1}, \ldots, a_{n}\right)$ of preferred parking spaces is a parking function.
(4) [5] Find a bijective proof of Theorem 1.2, i.e., find a bijection φ between the set of all rooted forests on $[n]$ and the set PF_{n} of all parking functions of length n satisfying $\operatorname{inv}(F)=\binom{n+1}{2}-a_{1}-\cdots-a_{n}$ when $\varphi(F)=\left(a_{1}, \ldots, a_{n}\right)$. Note. In principle a bijection φ can be obtained by carefully analyzing the proof of Theorem 1.2. However, this bijection will be of a messy recursive nature. A "nonrecursive" bijection would be greatly preferred.
(5) [5] There is a natural two-variable refinement of the distance enumerator (9) of \mathcal{S}_{n}. Given $R \in \mathcal{R}\left(\mathcal{S}_{n}\right)$, define $d_{0}\left(R_{0}, R\right)$ to be the number of hyperplanes $x_{i}=x_{j}$ separating R_{0} from R, and $d_{1}\left(R_{0}, R\right)$ to be the number of hyperplanes $x_{i}=x_{j}+1$ separating R_{0} from R. (Here R_{0} is given by (7) as usual.) Set

$$
D_{n}(q, t)=\sum_{R \in \mathcal{R}\left(\mathcal{S}_{n}\right)} q^{d_{0}\left(R_{0}, R\right)} t^{d_{1}\left(R_{0}, R\right)}
$$

What can be said about the polynomial $D_{n}(q, t)$? Can its coefficients be interpreted in a simple way in terms of tree or forest inversions? Are there formulas or recurrences for $D_{n}(q, t)$ generalizing Theorem 1.1, Corollary 1.1, or equation (5)? The table below give the coefficients of $q^{i} t^{j}$ in $D_{n}(q, t)$ for $2 \leq n \leq 4$.

$t \backslash^{q}$	0	1
0	1	1
1	1	

ι^{q}	0	1	2	3
0	1	1	2	1
1	2	2	2	
2	2	2		
3	1			

$t \backslash^{q}$	0	1	2	3	4	5	6
0	1	1	2	3	3	3	1
1	3	3	6	7	6	3	
2	5	5	8	9	5		
3	6	7	9	6			
4	5	6	5				
5	3	3					
6	1						

Some entries of these table are easy to understand, e.g., the first and last entries in each row and column, but a simple way to compute the entire table is not known.
(6) [5-] Let \mathcal{G}_{n} denote the generic braid arrangement

$$
x_{i}-x_{j}=a_{i j}, \quad 1 \leq i<j \leq n
$$

in \mathbb{R}^{n}. Can anything interesting be said about the distance enumerator $D_{\mathcal{G}_{n}}(t)$ (which depends on the choice of base region R_{0} and possibly on the $a_{i j}$'s)? Generalize if possible to generic graphical arrangments, especially for supersolvable (or chordal) graphs.
(7) [3-] Let \mathcal{A} be a real supersolvable arrangement and R_{0} a canonical region of \mathcal{A}. Show that the weak order $W_{\mathcal{A}}$ (with respect to R_{0}) is a lattice.
(8) (a) $[2+]$ let \mathcal{A} be a real central arrangement of rank d. Suppose that the weak order $W_{\mathcal{A}}$ (with respect to some region $R_{0} \in \mathcal{R}(\mathcal{A})$) is a lattice. Show that R_{0} is simplicial, i.e., bounded by exactly d hyperplanes.
(b) [3-] Let \mathcal{A} be a real central arrangement. Show that if every region $R \in$ $\mathcal{R}(\mathcal{A})$ is simplicial, then $W_{\mathcal{A}}$ is a lattice.

