Exercises 6

- (1) Let \mathcal{A} be a central arrangement in \mathbb{R}^n with distance enumerator $D_{\mathcal{A}}(t)$ (with respect to some base region R_0). Define a graph $G_{\mathcal{A}}$ on the vertex set $\mathcal{R}(\mathcal{A})$ by putting an edge between R and R' if #sep(R, R') = 1 (i.e., R and R' are separated by a unique hyperplane).
 - (a) [2–] Show that $G_{\mathcal{A}}$ is a bipartite graph.
 - (b) [2] Show that if $\#\mathcal{A}$ is odd, then $D_{\mathcal{A}}(-1) = 0$.
 - (c) [2] Show that if $\#\mathcal{A}$ is even and $r(\mathcal{A}) \equiv 2 \pmod{4}$, then $D_{\mathcal{A}}(-1) \equiv 2 \pmod{4}$ (so $D_{\mathcal{A}}(-1) \neq 0$).
 - (d) [2] Give an example of (c), i.e., find \mathcal{A} so that $\#\mathcal{A}$ is even and $r(\mathcal{A}) \equiv 2 \pmod{4}$.
 - (e) [2] Show that (c) cannot hold if \mathcal{A} is supersolvable. (It is *not* assumed that the base region R_0 is canonical. Try to avoid the use of Section 1.6.4.)
 - (f) [2+] Show that if $\#\mathcal{A}$ is even and $r(\mathcal{A}) \equiv 0 \pmod{4}$, then it is possible for $D_{\mathcal{A}}(-1) = 0$ and for $D_{\mathcal{A}}(-1) \neq 0$. Can example be found for rank $(\mathcal{A}) \leq 3$?
- (2) [2–] Show that a sequence $(c_1, \ldots, c_n) \in \mathbb{N}^n$ is the inversion sequence of a permutation $w \in \mathfrak{S}_n$ if and only if $c_i \leq i-1$ for $1 \leq i \leq n$.
- (3) [2] Show that all cars can park under the scenario following Definition 1.1 if and only if the sequence (a_1, \ldots, a_n) of preferred parking spaces is a parking function.
- (4) [5] Find a bijective proof of Theorem 1.2, i.e., find a bijection φ between the set of all rooted forests on [n] and the set PF_n of all parking functions of length n satisfying $\operatorname{inv}(F) = \binom{n+1}{2} a_1 \cdots a_n$ when $\varphi(F) = (a_1, \ldots, a_n)$. NOTE. In principle a bijection φ can be obtained by carefully analyzing the proof of Theorem 1.2. However, this bijection will be of a messy recursive nature. A "nonrecursive" bijection would be greatly preferred.
- (5) [5] There is a natural two-variable refinement of the distance enumerator (9) of S_n . Given $R \in \mathcal{R}(S_n)$, define $d_0(R_0, R)$ to be the number of hyperplanes $x_i = x_j$ separating R_0 from R, and $d_1(R_0, R)$ to be the number of hyperplanes $x_i = x_j + 1$ separating R_0 from R. (Here R_0 is given by (7) as usual.) Set

$$D_n(q,t) = \sum_{R \in \mathcal{R}(S_n)} q^{d_0(R_0,R)} t^{d_1(R_0,R)}.$$

What can be said about the polynomial $D_n(q, t)$? Can its coefficients be interpreted in a simple way in terms of tree or forest inversions? Are there formulas or recurrences for $D_n(q, t)$ generalizing Theorem 1.1, Corollary 1.1, or equation (5)? The table below give the coefficients of $q^i t^j$ in $D_n(q, t)$ for $2 \le n \le 4$.

Some entries of these table are easy to understand, e.g., the first and last entries in each row and column, but a simple way to compute the entire table is not known.

(6) [5–] Let \mathcal{G}_n denote the generic braid arrangement

 $x_i - x_j = a_{ij}, \quad 1 \le i < j \le n,$

in \mathbb{R}^n . Can anything interesting be said about the distance enumerator $D_{\mathcal{G}_n}(t)$ (which depends on the choice of base region R_0 and possibly on the a_{ij} 's)? Generalize if possible to generic graphical arrangements, especially for supersolvable (or chordal) graphs.

- (7) [3–] Let \mathcal{A} be a real supersolvable arrangement and R_0 a canonical region of \mathcal{A} . Show that the weak order $W_{\mathcal{A}}$ (with respect to R_0) is a lattice.
- (8) (a) [2+] let \mathcal{A} be a real central arrangement of rank d. Suppose that the weak order $W_{\mathcal{A}}$ (with respect to some region $R_0 \in \mathcal{R}(\mathcal{A})$) is a lattice. Show that R_0 is simplicial, i.e., bounded by exactly d hyperplanes.
 - (b) [3–] Let \mathcal{A} be a real central arrangement. Show that if every region $R \in \mathcal{R}(\mathcal{A})$ is simplicial, then $W_{\mathcal{A}}$ is a lattice.

106