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Exercises 4 
(1) [2–] Let M be a matroid on a linearly ordered set. Show that BC(M ) = BC( �M ), 

where �M is defined by equation (23). 
(2) [2+] Let M be a matroid of rank at least one. Show that the coefficients of the 

polynomial ψM (t)/(t − 1) alternate in sign. 
(3)	 (a) [2+] Let L be finite lattice for which every element has a unique comple

ment. Show that L is isomorphic to a boolean algebra Bn. 
(b) [3] A lattice L is distributive if 

x ⇒ (y ∈ z) = (x ⇒ y) ∈ (x z)⇒ 

x ∈ (y ⇒ z) = (x ∈ y) ⇒ (x ∈ z) 

for all x, y, z ≤ L. Let L be an infinite lattice with ˆ 1. If every element 0 and ˆ 

of L has a unique complement, then is L a distributive lattice? 
(4) [3–] Let x be an element of a geometric lattice L. Show that the following four 

conditions are equivalent.

(i)	 x is a modular element of L.

(ii) If x ∈ y = 0̂, then 

rk(x) + rk(y) = rk(x ⇒ y). 

(iii) If x and y are complements, then rk(x) + rk(y) = n. 
(iv) All complements of x are incomparable. 

(5) [2+] Let x, y be modular elements of a geometric lattice L. Show that x ∈ y is 
also modular. 

(6) [2] Let L be a geometric lattice. Prove or disprove: if x is modular in L and y 
is modular in the interval [x, ̂1], then y is modular in L. 

(7) [2–] Let L and L� be finite lattices. Show that if both L and L� are geometric 
(respectively, atomic, semimodular, modular) lattices, then so is L × L� . 

(8) [2] Let G be a (loopless) connected graph and v ≤ V (G). Let A = V (G) − v and 
β = {A, v} ≤ LG. Suppose that whenever av, bv ≤ E(G) we have ab ≤ E(G). 
Show that β is a modular element of LG. 

(9) [2+] Generalize the previous exercise as follows.	 Let G be a doubly-connected 
graph with lattice of contractions LG. Let β ≤ LG. Show that the following two 
conditions are equivalent. 
(a)	 β is a modular element of LG.

(b)	 β satisfies the following two properties:


(i) At most one block B of β contains more than one vertex of G. 
(ii) Let H be the subgraph induced by the block B of (i). Let K be any 

connected component of the subgraph induced by G − B, and let H1 

be the graph induced by the set of vertices in H that are connected 
to some vertex in K. Then H1 is a clique (complete subgraph) of G. 

(10) [2+] Let L be a geometric lattice of rank n, and fix x ≤ L. Show that 

ψL(t) = 
� 

µ(y)ψLy (t)t
n−rk(x∞y), 

y⊆L 
x≥y=0̂ 

where Ly is the image of the interval [0̂, x] under the map z �∃ z ⇒ y. 
(11) [2+] Let	 I(M ) be the set of independent sets of a matroid M . Find another 

matroid N and a labeling of its points for which I(M ) = BCr (N ), the reduced 
broken circuit complex of N . 
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(12)	 (a) [2+] If � and � are simplicial complexes on disjoint sets A and B, respec
tively, then define the join � ∼ � to be the simplicial complex on the set 
A ∅ B with faces F ∅ G, where F ≤ � and G ≤ �. (E.g., if � consists of 
a single point then � ∼ � is the cone over �. If � consists of two disjoint 
points, then � ∼ � is the suspension of �.) We say that � and � are join-
factors of � ∼�. Now let M be a matroid and S ⊇ M a modular flat, i.e., S 
is a modular element of LM . Order the points of M such that if p ≤ S and 
q ⇔≤ S, then p < q. Show that BC(S) is a join-factor of BC(M). Deduce 
that ψM (t) is divisible by ψS (t). 

(b) [2+] Conversely, let M be a matroid and S ⊇ M . Label the points of M so 
that if p ≤ S and q ⇔≤ S, then p < q. Suppose that BC(S) is a join-factor of 
BC(M). Show that S is modular. 

(13) [2] Do Exercise 7, this time using Theorem 4.12 (the Broken Circuit Theorem). 
(14) [1] Show that all geometric lattices of rank two are supersolvable. 
(15) [2] Give an example of two nonisomorphic supersolvable geometric lattices of 

rank 3 with the same characteristic polynomials. 
(16) [2] Prove Proposition 4.11: if G is a graph with blocks G1, . . . , Gk , then L =G 

∪ 

Gk .LG1 × · · · × L 
(17) [2+] Give an example of a nonsupersolvable geometric lattice of rank three whose 

characteristic polynomial has only integer zeros. 
(18) [2] Let L1 and L2 be geometric lattices. Show that L1 and L2 are supersolvable 

if and only if L1 × L2 is supersolvable. 
(19) [3–] Let L be a supersolvable geometric lattice. Show that every interval of L is 

also supersolvable. 
(20) [2] (a) Find the number of maximal chains of the partition lattice Γn. 

(b) Find the number of modular maximal chains of Γn. 
(21) Let M be a matroid with a linear ordering of its points. The internal activity of 

a basis B is the number of points p ≤ B such that p < q for all points q = p not⇔
in the closure B − p of B−p. The external activity of B is the number of points 
p�	 ≤ M −B such that p < q� for all q = p� contained in the unique circuit that ⇔
is a subset of B ∅ {p� . Define the Crapo beta invariant of M by } 

λ(M) = (−1)rk(M )−1ψ � 
M (1),
 

where � denotes differentiation.
 
(a) [1+] Show that 1−ψ � 

M (1) = ξ(BCr ), the Euler characteristic of the reduced 
broken circuit complex of M . 

(b) [3–] Show that	 λ(M) is equal to the number of bases of M with internal 
activity 0 and external activity 0. 

(c) [2] Let A be a real central arrangement with associated matroid MA. Sup
pose that A = cA� for some arrangement A�, where cA� denotes the cone 
over A� . Show that λ(MA) = b(A�). 

(d) [2+] With A as in (c), let H � be a (proper) translate of some hyperplane 
H ≤ A. Show that λ(MA) = b(A ∅ {H �}). 
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Exercises 5 
(1) [2] Verify equation (37), viz., 

ψA(Dn )(t) = (t− 1)(t− 3) · · · (t− (2n− 3) · (t− n+ 1). 

(2) [2] Draw a picture of the projectivization of the Coxeter arrangement	 A(B3), 
similar to Figure 1 of Lecture 1. 

(3)	 (a) [2] An embroidered permutation of [n] consists of a permutation w of [n] 
together with a collection E of ordered pairs (i, j) such that: 

•	 1 → i < j → n for all (i, j) ≤ E. 
•	 If (i, j) and (h, k) are distinct elements of E, then it is false that 
i h → k → j.→ 

• If (i, j) ≤ E then w(i) < w(j). 
For instance, the three embroidered permutations (w,E) of [2] are given 
by (12, �), (12, {(1, 2)}), and (21, �). Give a bijective proof that the num
ber r(Sn) of regions of the Shi arrangement Sn is equal to the number of 
embroidered permutations of [n]. 

(b) [2+] A parking function of length n is a sequence (a1, . . . , an) ≤ Pn whose 
increasing rearrangement b1 b2 bn satisfies bi i. For instance, → → · · · → →
the parking functions of length three are 11, 12, 21. Give a bijective proof 
that the number of parking functions of length n is equal to the number of 
embroidered permutations of [n]. 

(c) [3–] Give a combinatorial proof that the number of parking functions of 
length n is equal to (n+ 1)n−1 . 

(4) [2+] Show that if	 Sn denotes the Shi arrangement, then the cone cSn is not 
supersolvable for n ⊂ 3. 

(5) [2] Show that if	 f : P ∃ R and h : N ∃ R are related by equation (40) (with 
h(0) = 1), then equation (39) holds. 

(6) (a) [2] Compute the characteristic polynomial of the arrangement B� in Rn 
n 

with defining polynomial 

Q(x) = (x1 − xn − 1) 
� 

(xi − xj ). 
1⊇i<j⊇n 

In other words, B� consists of the braid arrangement together with the n 
hyperplane x1 − xn = 1. 

(b) [5–] Is cB� (the cone over B� 
n) supersolvable? n 

(7) [2+] Let 1 → k n. Find the characteristic polynomial of the arrangement Sn,k→
in Rn defined by 

xi − xj = 0 for 1 → i < j → n 
xi − xj = 1 for 1 → i < j → k. 

(8) [2+] Let 1 → k n. Find the characteristic polynomial of the arrangement Cn,k→
in Rn defined by 

xi = 0 for 1 	i n→ → 
xi ± xj = 0 for 1 → i < j → n . 
xi + xj = 1 for 1 → i < j → k. 

In particular, show that r(Cn,k ) = 2n−kn!
⎜
2k
�
.k 
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(9)	 (a) [2+] Let An be the arrangement in Rn with hyperplanes xi = 0 for all i, 
xi = xj for all i < j, and xi = 2xj for all i = j. Show that ⇔ 

ψAn (t) = (t− 1)(t− n− 2)n−1, 

where (x)m = x(x − 1) · · · (x − m + 1). In particular, r(An ) = 2(2n + 
1)!/(n+ 2)!. Can this be seen combinatorially? (This last question has not 
been worked on.) 

(b) [2+] Now let An be the arrangement in Rn with hyperplanes xi = xj for 
all i < j and xi = 2xj for all i = j. Show that ⇔ 

ψAn (t) = (t− 1)(t− n− 2)n−3(t
2 − (3n− 1)t+ 3n(n− 1)). 

In particular, r(An) = 6n2(2n− 1)!/(n+ 2)!. Again, a combinatorial proof 
can be asked for. 

(c) [5–] Modify.	 For instance, what about the arrangement with hyperplanes 
xi = 0 for all i, xi = xj for all i < j, and xi = 2xj for all i < j? Or xi = 0 
for all i, xi = xj for all i < j, xi = 2xj for all i = j, and xi = 3xj for all ⇔
i = j?⇔

(10)	 (a) [2+] For n ⊂ 1 let An be an arrangement in Rn such that every H ≤ An 

is parallel to a hyperplane of the form xi = cxj , where c ≤ R. Just as in 
the definition of an exponential sequence of arrangements, define for every 
subset S of [n] the arrangement 

AS = {H ≤ An : H is parallel to some xi = cxj , where i, j ≤ S}.n 

Suppose that for every such S we have LAS = LAk , where k = #S. Let 
n 
∪ 

nx 
F (x) = 

�
(−1)n r(An) 

n! 
n∗0 

nx�
(−1)rk(An )b(An)G(x) =	 . 

n! 
n∗0 

Show that 

)(t+1)/2xn G(x 
(48)	 

� 
ψAn (t) = 

)(t−1)/2 
. 

n! F (x 
n∗0 

(b) [2] Simplify equation (48) when each	 An is a central arrangement. Make 
sure that your simplification is valid for the braid arrangement and the 
coordinate hyperplane arrangement. 

(11) [2+] Let R0(Cn) denote the set of regions of the Catalan arrangement Cn con-
ˆtained in the regions x1 > x2 > > xn of Bn. Let R be the unique region · · · 

in R0(Cn) whose closure contains the origin. For R ≤ R0(Cn), let XR be the 
ˆset of hyperplanes H ≤ Cn such that R and R lie on different sides of H . Let 

Wn = {XR : R ≤ R0(Cn)}, ordered by inclusion. 
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a 

b 

c 

e 

a 
b 

c e 

d 

d 

W3 

Let Pn be the poset of intervals [i, j], 1 → i < j → n, ordered by reverse 
inclusion. 

[1,2] [2,3] [3,4] 

[1,3] 

[2,3][1,2] 

[2,4][1,3] 

[1,4] 

P3 P4 

Show that Wn = J(Pn), the lattice of order ideals of Pn. (An order ideal of a ∪ 

poset P is a subset I ∗ P such that if x ≤ I and y → x, then y ≤ I . Define J(P ) 
to be the set of order ideals of P , ordered by inclusion. See [18, Thm. 3.4.1].) 

(12) [2] Use the finite field method to prove that 

ψCn (t) = t(t− n− 1)(t− n− 2)(t− n− 3) · · · (t− 2n+ 1),
 

where Cn denotes the Catalan arrangement.
 
(13) [2+] Let k ≤ P. Find the number of regions and characteristic polynomial of the 

extended Catalan arrangement 

Cn(k) : xi − xj = 0,±1,±2, . . . ,±k, for 1 → i < j → n.
 

Generalize Exercise 11 to the arrangements Cn(k).
 
(14) [3–] Let SB denote the arrangement n 

xi ± xj = 0, 1, 1 → i < j → n 

2xi = 0, 1, 1 → i → n, 

called the Shi arrangement of type B. Find the characteristic polynomial and 
number of regions of SB . Is there a “nice” bijective proof of the formula for the n 
number of regions? 
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(15) [5–] Let 1 → k n. Find the number of regions (or more generally the charac→
teristic polynomial) of the arrangement (in Rn) 

� 
1, 1 i k 

= 
→ →

xi − xj 2, k + 1 → i → n, 

for all i = j. Thus we are counting interval orders on [n] where the elements ⇔
1, 2, . . . , k correspond to intervals of length one, while k + 1, . . . , n correspond 
to intervals of length two. Is it possible to count such interval orders up to 
isomorphism (i.e., the unlabelled case)? What if the length 2 is replaced instead 
by a generic length a? 

(16) [2+] A double semiorder on [n] consists of two binary relations < and ∧ on [n] 
that arise from a set x1, . . . , xn of real numbers as follows: 

i < j if xi < xj − 1 

i ∧ j if xi < xj − 2. 

If we associate the interval Ii = [xi − 2, xi] with the point xi, then we are 
specifying whether Ii lies to the left of the midpoint of Ij , entirely to the left of 
Ij , or neither. It should be clear what is meant for two double semiorders to be 
isomorphic. 
(a) [2] Draw interval diagrams of the 12 nonisomorphic double semiorders on 

{1, 2, 3}. 
(b) [2] Let	 χ2(n) denote the number of double semiorders on [n]. Find an 

arrangement I(2) 
satisfying r(I(2)

) = χ2(n).n n 

(c) [2+] Show that the number of nonisomorphic double semiorders on [n] is 
1given by 2n+1 

⎜
3n
�
. n

1 
⎜
3n
�
xn(d) [2–] Let F (x) = 

� 
. Show that n∗0 2n+1 n 

nx�
χ2(n) = F (1 − e −x). 

n! 
n∗0 

(e) [2] Generalize to “k-semiorders,” where ordinary semiorders (or unit interval 
orders) correspond to k = 1 and double semiorders to k = 2. 

(17) [1+] Show that intervals of lengths 1, 1.0001, 1.001, 1.01, 1.1 cannot form an in
terval order isomorphic to 4 + 1, but that such an interval order can be formed 
if the lengths are 1, 10, 100, 1000, 10000. 

(18) [5–] What more can be said about interval orders with generic interval lengths? 
For instance, consider the two cases: (a) interval lengths very near each other 
(e.g., 1, 1.001, 1.01, 1.1), and (b) interval lengths superincreasing (e.g., 1, 10, 100, 
1000). Are there finitely many obstructions to being such an interval order? Can 
the number of unlabelled interval orders of each type be determined? (Perhaps 
the numbers are the same, but this seems unlikely.) 

(19) (a) [3] Let Ln denote the Linial arrangement, say in Rn . Show that 
n 

t 
ψLn (t) = 

��
n
� 

(t− k)n−1 . 
2n k 

k=1 

(b) [1+] Deduce from (a) that 

ψLn (t) (−1)nψLn (−t+ n) 
=	 . 

t −t+ n 
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Figure 10. The seven alternating trees on the vertex set [4] 

(20)	 (a) [3–] An alternating tree on the vertex set [n] is a tree on [n] such that 
every vertex is either less than all its neighbors or greater than all its neigh
bors. Figure 10 shows the seven alternating trees on [4]. Deduce from 
Exercise 19(a) that r(Ln) is equal to the number of alternating trees on 
[n + 1]. 

(b) [5] Find a bijective proof of (a), i.e., give an explicit bijection between the 
regions of Ln and the alternating trees on [n + 1]. 

(21) [3–] Let 
ψLn (t) = ant

n − an−1t
n−1 + · · · + (−1)n−1 a1t. 

Deduce from Exercise 19(a) that ai is the number of alternating trees on the 
vertex set 0, 1, . . . , n such that vertex 0 has degree (number of adjacent vertices) 
i. 

(22)	 (a) [2+] Let P (t) ≤ C[t] have the property that every (complex) zero of P (t) 
has real part a. Let z ≤ C satisfy z 	 = 1. Show that every zero of the | |
polynomial P (t − 1) + zP (t) has real part a + 12 . 

(b) [2+] Deduce from (a) and Exercise 19(a) that every zero of the polynomial 
ψLn (t)/t has real part n/2. This result is known as the “Riemann hypothesis 
for the Linial arrangement.” 

(23) (a) [2–] Compute limn∪≤ b(Sn)/r(Sn), where Sn denotes the Shi arrangement. 
(b) [3] Do the same for the Linial arrangement Ln. 

(24) [2+] Let Ln denote the Linial arrangement in Rn . Fix an integer r = 0, ±1, and ⇔
let Mn(r) be the arrangement in Rn defined by xi = rxj , 1 → i < j → n, together 
with the coordinate hyperplanes xi = 0. Find a relationship between ψLn (t) and 
ψMn(r)(t) without explicitly computing these characteristic polynomials. 

(25)	 (a) [3–] A threshold graph on [n] may be defined recursively as follows: (i) the 
empty graph � is a threshold graph, (ii) if G is a threshold graph, then so is 
the disjoint union of G and a single vertex, and (iii) if G is a threshold graph, 
then so is the graph obtained by adding a new vertex v and connecting it 
to every vertex of G. Let Tn denote the threshold arrangement. Show that 
r(Tn) is the number of threshold graphs on [n]. 
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(b) [2+] Deduce from (a) that 
nx ex(1 − x)� 

r(Tn) = 
x 
. 

n! 2 − e 
n∗0 

(c) [1+] Deduce from Exercise 10 that 
nx� 

ψTn (t) = (1 + x)(2e x − 1)(t−1)/2 . 
n! 

n∗0 

(26) [5–] Let 
ψTn (t) = tn − an−1t

n−1 + · · · + (−1)n a0.
 

For instance,
 
3ψT3 (t) = t − 3t2 + 3t− 1 
4 2ψT4 (t) = t − 6t3 + 15t − 17t+ 7 
5 3ψT5 (t) = t − 10t4 + 45t − 105t2 + 120t− 51. 

By Exercise 25(a), a0 + a1 + + an−1 + 1 is the number of threshold graphs · · · 
on the vertex set [n]. Give a combinatorial interpretation of the numbers ai as 
the number of threshold graphs with a certain property. 

(27)	 (a) [1+] Find the number of regions of the “Linial threshold arrangement” 

xi + xj = 1, 1 → i < j → n. 

(b) [5–] Find the number of regions, or even the characteristic polynomial, of 
the “Shi threshold arrangement” 

xi + xj = 0, 1, 1 → i < j → n. 

(28) [3–] Let An denote the “generic threshold arrangement” (in Rn) xi + xj = aij , 
1 → i < j → n, where the aij ’s are generic. Let
 

n
 
n−2 x 

T (x) = 
� 

n , 
n! 

n∗1 

the generating function for labelled trees on n vertices. Let 
n 

n−1 x 
R(x) = 

� 
n , 

n! 
n∗1 

the generating function for rooted labelled trees on n vertices. Show that 

xn
T (x)− 1 R(x) 

� 
1 + R(x) 

�1/4 

2

� 
r(An ) = e 

n!	 1 −R(x)
n∗0 

2 3 4 5 6x x x x x 
= 1 + x+ 2 + 8 + 54 + 533 + 6934 + . 

2! 3! 4! 5! 6! 
· · · 

(29) [2+] Fix k, n ⊂ 1 and r ⊂ 0. Let f(k, n, r) be the number of k×n (0, 1)-matrices 
A over the rationals such that all rows of A are distinct, every row has at least 
one 1, and rank(A) = r. Let gn(q) be the number of n-tuples (a1, . . . , an) ≤ Fn 

q 

such that no nonempty subset of the entries sums to 0 (in Fq ). Show that for 
p ∨ 0, where q = pd, we have 

(−1)k 

gn(q) = 
� 

f(k, n, r)q n−r . 
k! 

k,r 
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(The case k = 0 is included, corresponding to the empty matrix, which has rank 
0.) 


