Exercises 3

(1) (a) $[1+]$ Let $\chi_{G}(t)$ be the characteristic polynomial of the graphical arrangement \mathcal{A}_{G}. Suppose that $\chi_{G}(i)=0$, where $i \in \mathbb{Z}, i>1$. Show that $\chi_{G}(i-1)=0$.
(b) [2] Is the same conclusion true for any central arrangement \mathcal{A} ?
(2) [2] Show that if F and F^{\prime} are flats of a matroid M, then so is $F \cap F^{\prime}$.
(3) [2] Prove the assertion in the Note following the proof of Theorem 3.8 that an interval $[x, y]$ of a geometric lattice L is also a geometric lattice.
(4) $[2+]$ Let \mathcal{A} be an arrangement (not necessarily central). Show that there exists a geometric lattice L and an atom a of L such that $L(\mathcal{A}) \cong L-V_{a}$, where $V_{a}=\{x \in L: x \geq a\}$.
(5) [2-] Let L be a geometric lattice of rank n, and define the truncation $T(L)$ to be the subposet of L consisting of all elements of rank $\neq n-1$. Show that $T(L)$ is a geometric lattice.
(6) Let W_{i} be the number of elements of rank i in a geometric lattice (or just in the intersection poset of a central hyperplane arrangement, if you prefer) of rank n.
(a) [3] Show that for $k \leq n / 2$,

$$
W_{1}+W_{2}+\cdots+W_{k} \leq W_{n-k}+W_{n-k+1}+\cdots+W_{n-1}
$$

(b) [2-] Deduce from (a) and Exercise 5 that $W_{1} \leq W_{k}$ for all $1 \leq k \leq n-1$.
(c) [5] Show that $W_{i} \leq W_{n-i}$ for $i<n / 2$ and that the sequence $W_{0}, W_{1}, \ldots, W_{n}$ is unimodal. (Compare Lecture 2, Exercise 9.)
(7) [3-] Let $x \leq y$ in a geometric lattice L. Show that $\mu(x, y)= \pm 1$ if and only if the interval $[x, y]$ is isomorphic to a boolean algebra. (Use Weisner's theorem.) Note. This problem becomes much easier using Theorem 4.12 (the Broken Circuit Theorem); see Exercise 13.

Exercises 4

(1) [2-] Let M be a matroid on a linearly ordered set. Show that $\mathrm{BC}(M)=\mathrm{BC}(\widehat{M})$, where \widehat{M} is defined by equation (23).
(2) $[2+]$ Let M be a matroid of rank at least one. Show that the coefficients of the polynomial $\chi_{M}(t) /(t-1)$ alternate in sign.
(3) (a) $[2+]$ Let L be finite lattice for which every element has a unique complement. Show that L is isomorphic to a boolean algebra B_{n}.
(b) [3] A lattice L is distributive if

$$
\begin{aligned}
& x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z) \\
& x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)
\end{aligned}
$$

for all $x, y, z \in L$. Let L be an infinite lattice with $\hat{0}$ and $\hat{1}$. If every element of L has a unique complement, then is L a distributive lattice?
(4) [3-] Let x be an element of a geometric lattice L. Show that the following four conditions are equivalent.
(i) x is a modular element of L.
(ii) If $x \wedge y=\hat{0}$, then

$$
\operatorname{rk}(x)+\operatorname{rk}(y)=\operatorname{rk}(x \vee y) .
$$

(iii) If x and y are complements, then $\operatorname{rk}(x)+\operatorname{rk}(y)=n$.
(iv) All complements of x are incomparable.
(5) $[2+]$ Let x, y be modular elements of a geometric lattice L. Show that $x \wedge y$ is also modular.
(6) [2] Let L be a geometric lattice. Prove or disprove: if x is modular in L and y is modular in the interval $[x, \hat{1}]$, then y is modular in L.
(7) [2-] Let L and L^{\prime} be finite lattices. Show that if both L and L^{\prime} are geometric (respectively, atomic, semimodular, modular) lattices, then so is $L \times L^{\prime}$.
(8) [2] Let G be a (loopless) connected graph and $v \in V(G)$. Let $A=V(G)-v$ and $\pi=\{A, v\} \in L_{G}$. Suppose that whenever $a v, b v \in E(G)$ we have $a b \in E(G)$. Show that π is a modular element of L_{G}.
(9) $[2+]$ Generalize the previous exercise as follows. Let G be a doubly-connected graph with lattice of contractions L_{G}. Let $\pi \in L_{G}$. Show that the following two conditions are equivalent.
(a) π is a modular element of L_{G}.
(b) π satisfies the following two properties:
(i) At most one block B of π contains more than one vertex of G.
(ii) Let H be the subgraph induced by the block B of (i). Let K be any connected component of the subgraph induced by $G-B$, and let H_{1} be the graph induced by the set of vertices in H that are connected to some vertex in K. Then H_{1} is a clique (complete subgraph) of G.
(10) [2+] Let L be a geometric lattice of rank n, and fix $x \in L$. Show that

$$
\chi_{L}(t)=\sum_{\substack{y \in L \\ x \wedge y=\hat{0}}} \mu(y) \chi_{L_{y}}(t) t^{n-\mathrm{rk}(x \vee y)},
$$

where L_{y} is the image of the interval $[\hat{0}, x]$ under the map $z \mapsto z \vee y$.
(11) $[2+]$ Let $\mathcal{J}(M)$ be the set of independent sets of a matroid M. Find another matroid N and a labeling of its points for which $\mathcal{J}(M)=\mathrm{BC}_{r}(N)$, the reduced broken circuit complex of N.
(12) (a) $[2+]$ If Δ and Γ are simplicial complexes on disjoint sets A and B, respectively, then define the join $\Delta * \Gamma$ to be the simplicial complex on the set $A \cup B$ with faces $F \cup G$, where $F \in \Delta$ and $G \in \Gamma$. (E.g., if Γ consists of a single point then $\Delta * \Gamma$ is the cone over Δ. If Γ consists of two disjoint points, then $\Delta * \Gamma$ is the suspension of Δ.) We say that Δ and Γ are joinfactors of $\Delta * \Gamma$. Now let M be a matroid and $S \subset M$ a modular flat, i.e., S is a modular element of L_{M}. Order the points of M such that if $p \in S$ and $q \notin S$, then $p<q$. Show that $\mathrm{BC}(S)$ is a join-factor of $\mathrm{BC}(M)$. Deduce that $\chi_{M}(t)$ is divisible by $\chi_{S}(t)$.
(b) $[2+]$ Conversely, let M be a matroid and $S \subset M$. Label the points of M so that if $p \in S$ and $q \notin S$, then $p<q$. Suppose that $\mathrm{BC}(S)$ is a join-factor of $\mathrm{BC}(M)$. Show that S is modular.
(13) [2] Do Exercise 7, this time using Theorem 4.12 (the Broken Circuit Theorem).
(14) [1] Show that all geometric lattices of rank two are supersolvable.
(15) [2] Give an example of two nonisomorphic supersolvable geometric lattices of rank 3 with the same characteristic polynomials.
(16) [2] Prove Proposition 4.11: if G is a graph with blocks G_{1}, \ldots, G_{k}, then $L_{G} \cong$ $L_{G_{1}} \times \cdots \times L_{G_{k}}$.
(17) $[2+]$ Give an example of a nonsupersolvable geometric lattice of rank three whose characteristic polynomial has only integer zeros.
(18) [2] Let L_{1} and L_{2} be geometric lattices. Show that L_{1} and L_{2} are supersolvable if and only if $L_{1} \times L_{2}$ is supersolvable.
(19) [3-] Let L be a supersolvable geometric lattice. Show that every interval of L is also supersolvable.
(20) [2] (a) Find the number of maximal chains of the partition lattice Π_{n}. (b) Find the number of modular maximal chains of Π_{n}.
(21) Let M be a matroid with a linear ordering of its points. The internal activity of a basis B is the number of points $p \in B$ such that $p<q$ for all points $q \neq p$ not in the closure $\overline{B-p}$ of $B-p$. The external activity of B is the number of points $p^{\prime} \in M-B$ such that $p^{\prime}<q^{\prime}$ for all $q^{\prime} \neq p^{\prime}$ contained in the unique circuit that is a subset of $B \cup\left\{p^{\prime}\right\}$. Define the Crapo beta invariant of M by

$$
\beta(M)=(-1)^{\mathrm{rk}(M)-1} \chi_{M}^{\prime}(1),
$$

where ' denotes differentiation.
(a) $[1+]$ Show that $1-\chi_{M}^{\prime}(1)=\psi\left(\mathrm{BC}_{r}\right)$, the Euler characteristic of the reduced broken circuit complex of M.
(b) [3-] Show that $\beta(M)$ is equal to the number of bases of M with internal activity 0 and external activity 0 .
(c) [2] Let \mathcal{A} be a real central arrangement with associated matroid $M_{\mathcal{A}}$. Suppose that $\mathcal{A}=c \mathcal{A}^{\prime}$ for some arrangement \mathcal{A}^{\prime}, where $c \mathcal{A}^{\prime}$ denotes the cone over \mathcal{A}^{\prime}. Show that $\beta\left(M_{\mathcal{A}}\right)=b\left(\mathcal{A}^{\prime}\right)$.
(d) $[2+]$ With \mathcal{A} as in (c), let H^{\prime} be a (proper) translate of some hyperplane $H \in \mathcal{A}$. Show that $\beta\left(M_{\mathcal{A}}\right)=b\left(\mathcal{A} \cup\left\{H^{\prime}\right\}\right)$.

