Exercises 2

(1) [3-] Show that for any arrangement \mathcal{A}, we have $\chi_{c \mathcal{A}}(t)=(t-1) \chi_{\mathcal{A}}(t)$, where $c \mathcal{A}$ denotes the cone over \mathcal{A}. (Use Whitney's theorem.)
(2) [2-] Let G be a graph on the vertex set $[n]$. Show that the bond lattice L_{G} is a sub-join-semilattice of the partition lattice Π_{n} but is not in general a sublattice of Π_{n}.
(3) [2-] Let G be a forest (graph with no cycles) on the vertex set [n]. Show that $L_{G} \cong B_{E(G)}$, the boolean algebra of all subsets of $E(G)$.
(4) [2] Let G be a graph with n vertices and \mathcal{A}_{G} the corresponding graphical arrangement. Suppose that G has a k-element clique, i.e., k vertices such that any two are adjacent. Show that $k!\mid r(\mathcal{A})$.
(5) $[2+]$ Let G be a graph on the vertex set $[n]=\{1,2, \ldots, n\}$, and let \mathcal{A}_{G} be the corresponding graphical arrangement (over any field K, but you may assume $K=\mathbb{R}$ if you wish). Let \mathcal{C}_{n} be the coordinate hyperplane arrangement, consisting of the hyperplanes $x_{i}=0,1 \leq i \leq n$. Express $\chi_{\mathcal{A}_{G} \cup \mathcal{C}_{n}}(t)$ in terms of $\chi_{\mathcal{A}_{G}}(t)$.
(6) [4] Let G be a planar graph, i.e., G can be drawn in the plane without crossing edges. Show that $\chi_{\mathcal{A}_{G}}(4) \neq 0$.
(7) $[2+]$ Let G be a graph with n vertices. Show directly from the the deletioncontraction recurrence (20) that

$$
(-1)^{n} \chi_{G}(-1)=\# \mathrm{AO}(G) .
$$

(8) $[2+]$ Let $\chi_{G}(t)=t^{n}-c_{n-1} t^{n-1}+\cdots+(-1)^{n-1} c_{1} t$ be the chromatic polynomial of the graph G. Let i be a vertex of G. Show that c_{1} is equal to the number of acyclic orientations of G whose unique source is i. (A source is a vertex with no arrows pointing in. In particular, an isolated vertex is a source.)
(9) [5] Let \mathcal{A} be an arrangement with characteristic polynomial $\chi_{\mathcal{A}}(t)=t^{n}-$ $c_{n-1} t^{n-1}+c_{n-2} t^{n-2}-\cdots+(-1)^{n} c_{0}$. Show that the sequence $c_{0}, c_{1}, \ldots, c_{n}=1$ is unimodal, i.e., for some j we have

$$
c_{0} \leq c_{1} \leq \cdots \leq c_{j} \geq c_{j+1} \geq \cdots \geq c_{n}
$$

(10) $[2+]$ Let $f(n)$ be the total number of faces of the braid arrangement \mathcal{B}_{n}. Find a simple formula for the generating function

$$
\sum_{n \geq 0} f(n) \frac{x^{n}}{n!}=1+x+3 \frac{x^{2}}{2!}+13 \frac{x^{3}}{3!}+75 \frac{x^{4}}{4!}+541 \frac{x^{5}}{5!}+4683 \frac{x^{6}}{6!}+\cdots
$$

More generally, let $f_{k}(n)$ denote the number of k-dimensional faces of \mathcal{B}_{n}. For instance, $f_{1}(n)=1$ (for $n \geq 1$) and $f_{n}(n)=n$!. Find a simple formula for the generating function

$$
\sum_{n \geq 0} \sum_{k \geq 0} f_{k}(n) y^{k} \frac{x^{n}}{n!}=1+y x+\left(y+2 y^{2}\right) \frac{x^{2}}{2!}+\left(y+6 y^{2}+6 y^{3}\right) \frac{x^{3}}{3!}+\cdots
$$

