Exercises 1

We will (subjectively) indicate the difficulty level of each problem as follows:
[1] easy: most students should be able to solve it
[2] moderately difficult: many students should be able to solve it
[3] difficult: a few students should be able to solve it
[4] horrendous: no students should be able to solve it (without already knowing how)
[5] unsolved.
Further gradations are indicated by + and - . Thus a [3-] problem is about the most difficult that makes a reasonable homework exercise, and a [5-] problem is an unsolved problem that has received little attention and may not be too difficult.

Note. Unless explicitly stated otherwise, all graphs, posets, lattices, etc., are assumed to be finite.
(1) [2] Show that every region R of an arrangement \mathcal{A} in \mathbb{R}^{n} is an open convex set. Deduce that R is homeomorphic to the interior of an n-dimensional ball.
(2) $[1+]$ Let \mathcal{A} be an arrangement and $\operatorname{ess}(\mathcal{A})$ its essentialization. Show that

$$
t^{\operatorname{dim}(\operatorname{ess}(\mathcal{A}))} \chi_{\mathcal{A}}(t)=t^{\operatorname{dim}(\mathcal{A})} \chi_{\operatorname{ess}(\mathcal{A})}(t)
$$

(3) $[2+]$ Let \mathcal{A} be the arrangement in \mathbb{R}^{n} with equations

$$
x_{1}=x_{2}, x_{2}=x_{3}, \ldots, x_{n-1}=x_{n}, x_{n}=x_{1}
$$

Compute the characteristic polynomial $\chi_{\mathcal{A}}(t)$, and compute the number $r(\mathcal{A})$ of regions of \mathcal{A}.
(4) $[2+]$ Let \mathcal{A} be an arrangement in \mathbb{R}^{n} with m hyperplanes. Find the maximum possible number $f(n, m)$ of regions of \mathcal{A}.
(5) [2] Let \mathcal{A} be an arrangement in the n-dimensional vector space V whose normals span a subspace W, and let \mathcal{B} be another arrangement in V whose normals span a subspace Y. Suppose that $W \cap Y=\{0\}$. Show that

$$
\chi_{\mathcal{A} \cup \mathcal{B}}(t)=t^{-n} \chi_{\mathcal{A}}(t) \chi_{\mathcal{B}}(t) .
$$

(6) [2] Let \mathcal{A} be an arrangment in a vector space V. Suppose that $\chi_{\mathcal{A}}(t)$ is divisible by t^{k} but not t^{k+1}. Show that $\operatorname{rank}(\mathcal{A})=n-k$.
(7) Let \mathcal{A} be an essential arrangement in \mathbb{R}^{n}. Let Γ be the union of the bounded faces of \mathcal{A}.
(a) [3] Show that Γ is contractible.
(b) [2] Show that Γ need not be homeomorphic to a closed ball.
(c) $[2+]$ Show that Γ need not be starshaped. (A subset S of \mathbb{R}^{n} is starshaped if there is a point $x \in S$ such that for all $y \in S$, the line segment from x to y lies in S.)
(d) [3] Show that Γ is pure, i.e., all maximal faces of Γ have the same dimension. (This was an open problem solved by Xun Dong at the PCMI Summer Session in Geometric Combinatorics, July 11-31, 2004.)
(e) [5] Suppose that \mathcal{A} is in general position. Is Γ homeomorphic to an n dimensional closed ball?

