Exercises 1

We will (subjectively) indicate the difficulty level of each problem as follows:

- [1] easy: most students should be able to solve it
- [2] moderately difficult: many students should be able to solve it
- [3] difficult: a few students should be able to solve it
- [4] horrendous: no students should be able to solve it (without already knowing how)
- [5] unsolved.

Further gradations are indicated by + and -. Thus a [3–] problem is about the most difficult that makes a reasonable homework exercise, and a [5–] problem is an unsolved problem that has received little attention and may not be too difficult.

NOTE. Unless explicitly stated otherwise, all graphs, posets, lattices, etc., are assumed to be *finite*.

- (1) [2] Show that every region R of an arrangement \mathcal{A} in \mathbb{R}^n is an open convex set. Deduce that R is homeomorphic to the interior of an *n*-dimensional ball.
- (2) [1+] Let \mathcal{A} be an arrangement and $ess(\mathcal{A})$ its essentialization. Show that

$$t^{\dim(\operatorname{ess}(\mathcal{A}))}\chi_{\mathcal{A}}(t) = t^{\dim(\mathcal{A})}\chi_{\operatorname{ess}(\mathcal{A})}(t).$$

(3) [2+] Let \mathcal{A} be the arrangement in \mathbb{R}^n with equations

$$x_1 = x_2, x_2 = x_3, \ldots, x_{n-1} = x_n, x_n = x_1.$$

Compute the characteristic polynomial $\chi_{\mathcal{A}}(t)$, and compute the number $r(\mathcal{A})$ of regions of \mathcal{A} .

- (4) [2+] Let \mathcal{A} be an arrangement in \mathbb{R}^n with *m* hyperplanes. Find the maximum possible number f(n,m) of regions of \mathcal{A} .
- (5) [2] Let \mathcal{A} be an arrangement in the *n*-dimensional vector space V whose normals span a subspace W, and let \mathcal{B} be another arrangement in V whose normals span a subspace Y. Suppose that $W \cap Y = \{0\}$. Show that

$$\chi_{\mathcal{A}\cup\mathcal{B}}(t) = t^{-n}\chi_{\mathcal{A}}(t)\chi_{\mathcal{B}}(t).$$

- (6) [2] Let \mathcal{A} be an arrangement in a vector space V. Suppose that $\chi_{\mathcal{A}}(t)$ is divisible by t^k but not t^{k+1} . Show that rank $(\mathcal{A}) = n k$.
- (7) Let \mathcal{A} be an essential arrangement in \mathbb{R}^n . Let Γ be the union of the bounded faces of \mathcal{A} .
 - (a) [3] Show that Γ is contractible.
 - (b) [2] Show that Γ need not be homeomorphic to a closed ball.
 - (c) [2+] Show that Γ need not be starshaped. (A subset S of \mathbb{R}^n is starshaped if there is a point $x \in S$ such that for all $y \in S$, the line segment from x to y lies in S.)
 - (d) [3] Show that Γ is pure, i.e., all maximal faces of Γ have the same dimension. (This was an open problem solved by Xun Dong at the PCMI Summer Session in Geometric Combinatorics, July 11–31, 2004.)
 - (e) [5] Suppose that \mathcal{A} is in general position. Is Γ homeomorphic to an *n*-dimensional closed ball?

12