
18.314: SOLUTIONS TO
PRACTICE HOUR EXAM #2

(for hour exam of November 14, 2014)

1. (a) We have

∑

f(n)xn =
∏

(

1 + x2k + x2·2k + x3·2k
)

n≥0 k≥0

k

=
k

∏ 1− x4·2

≥0

.
1− x2k

The numerator factors cancel all the denominator factors except
the first two, i.e., 1− x and 1− x2, so

∑ 1
f(n)xn =

n≥0

.
(1− x)(1− x2)

Hence f(n) is equal to the number of partitions of n with parts 1
and 2, so S = {1, 2}.

(b) We want to count partitions of n into parts 1 and 2. The number
of 2’s in the partition can range from 0 to ⌊n/2⌋, and the remaining
parts must equal 1. Hence the number of choices is 1 + ⌊n/2⌋.

2. Multiply the recurrence by xn+2 and sum on n ≥ 0. Set F (x) =
∑

n≥0
a n
nx . We get

F (x)− x = 6xF (x)− 8F (x),

so

x
F (x) =

1− 6x+ 8x2

x
=

(1− 2x)(1− 4x)

1/2
=

1− 4x
−

1/2

1− 2x
.

Hence f(n) = 1

2
(4n−2n), Since 1

2
(4n−2n) = 1 n

2
2 (2n−1), f(n) is always

a triangular number.
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3. We are choosing an ordered pair (S, T ) of subsets of the pencils such
that #S is odd and then coloring each pencil in S either red, blue,
green, or yellow, and coloring each pencil in T either white, black, or
Halayà úbe. If S has k elements where k is odd, then the number of
colorings of S is 4k. If T has k elements then the number of colorings
of T is 3k. The exponential generating function for the number of
colorings of S is

k

F (x =
k

∑

4k
x

)
odd

k!

= sinh(4x)
1

= (e4x − e−4x).
2

The exponential generating function for the number of colorings of T
is

k

G(x =
∑

3k
x

)
k≥0

= e3x.
k!

Hence by Theorem 8.21 on page 168, we have

n
∑ x

f(n)
n≥0

n!
=

1
(e4x − e−4x)e3x

2

1
=

2
(e7x − e−x)

=
1 xn

(
2

∑

7n − (−1)n)
n≥0

n!
,

so f(n) = 1 n

2
(7 − (−1)n).

Note. Halayà ubé is a kind of purple color named after a Phillipines
dessert made from boiled and grated purple yams. See

http://en.wikipedia.org/wiki/List of colors.

4. (a) Each Hamiltonian path has n − 1 edges. The total number of
edges of Kn is

(

n

2

)

= n(n − 1)/2. Hence the number of paths is
n/2, which fails to be an integer when n is odd.

(b) Let the vertices be 0, 1, . . . , n − 1. Let one of the paths P have
vertices (in their order along P )

n
0, n− 1, 1, n− 2, 2, n− 3, . . . , .

2

2

http://en.wikipedia.org/wiki/List of colors


Let the other paths be obtained from P by adding i to each coor-
dinate for i = 1, 2, . . . , n

2
− 1, and taking the sum modulo n (i.e.,

if the sum exceeds n− 1 then subtract n from it). For instance, if
n = 8 then the four paths are

0 7 1 6 2 5 3 4
1 0 2 7 3 6 4 5
2 1 3 0 4 7 5 6
3 2 4 1 5 0 6 7.

We leave the verification that this works as an exercise.

Another way to describe the same solution (suggested by Y. Hu) is
to put the vertices 0, 1, . . . , n−1 in clockwise order on a circle. Let
P be the zigzag path whose vertices (in order) are 0, n− 1, 1, n−
2, 2, n−3, 3, . . . , 1

2
n. Rotate the circle around the center by 2jπ/n

radians for 0 ≤ j ≤ n

2
− 1. Each such rotation gives one of the

paths in the partition into Hamiltonian paths.
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