18.314: SOLUTIONS TO
 PRACTICE HOUR EXAM \#2

(for hour exam of November 14, 2014)

1. (a) We have

$$
\begin{aligned}
\sum_{n \geq 0} f(n) x^{n} & =\prod_{k \geq 0}\left(1+x^{2^{k}}+x^{2 \cdot 2^{k}}+x^{3 \cdot 2^{k}}\right) \\
& =\prod_{k \geq 0} \frac{1-x^{4 \cdot 2^{k}}}{1-x^{2^{k}}}
\end{aligned}
$$

The numerator factors cancel all the denominator factors except the first two, i.e., $1-x$ and $1-x^{2}$, so

$$
\sum_{n \geq 0} f(n) x^{n}=\frac{1}{(1-x)\left(1-x^{2}\right)}
$$

Hence $f(n)$ is equal to the number of partitions of n with parts 1 and 2 , so $S=\{1,2\}$.
(b) We want to count partitions of n into parts 1 and 2 . The number of 2 's in the partition can range from 0 to $\lfloor n / 2\rfloor$, and the remaining parts must equal 1. Hence the number of choices is $1+\lfloor n / 2\rfloor$.
2. Multiply the recurrence by x^{n+2} and sum on $n \geq 0$. Set $F(x)=$ $\sum_{n \geq 0} a_{n} x^{n}$. We get

$$
F(x)-x=6 x F(x)-8 F(x),
$$

so

$$
\begin{aligned}
F(x) & =\frac{x}{1-6 x+8 x^{2}} \\
& =\frac{x}{(1-2 x)(1-4 x)} \\
& =\frac{1 / 2}{1-4 x}-\frac{1 / 2}{1-2 x} .
\end{aligned}
$$

Hence $f(n)=\frac{1}{2}\left(4^{n}-2^{n}\right)$, Since $\frac{1}{2}\left(4^{n}-2^{n}\right)=\frac{1}{2} 2^{n}\left(2^{n}-1\right), f(n)$ is always a triangular number.
3. We are choosing an ordered pair (S, T) of subsets of the pencils such that $\# S$ is odd and then coloring each pencil in S either red, blue, green, or yellow, and coloring each pencil in T either white, black, or Halayà úbe. If S has k elements where k is odd, then the number of colorings of S is 4^{k}. If T has k elements then the number of colorings of T is 3^{k}. The exponential generating function for the number of colorings of S is

$$
\begin{aligned}
F(x) & =\sum_{k \text { odd }} 4^{k} \frac{x^{k}}{k!} \\
& =\sinh (4 x) \\
& =\frac{1}{2}\left(e^{4 x}-e^{-4 x}\right) .
\end{aligned}
$$

The exponential generating function for the number of colorings of T is

$$
G(x)=\sum_{k \geq 0} 3^{k} \frac{x^{k}}{k!}=e^{3 x}
$$

Hence by Theorem 8.21 on page 168, we have

$$
\begin{aligned}
\sum_{n \geq 0} f(n) \frac{x^{n}}{n!} & =\frac{1}{2}\left(e^{4 x}-e^{-4 x}\right) e^{3 x} \\
& =\frac{1}{2}\left(e^{7 x}-e^{-x}\right) \\
& =\frac{1}{2} \sum_{n \geq 0}\left(7^{n}-(-1)^{n}\right) \frac{x^{n}}{n!}
\end{aligned}
$$

so $f(n)=\frac{1}{2}\left(7^{n}-(-1)^{n}\right)$.
Note. Halayà ubé is a kind of purple color named after a Phillipines dessert made from boiled and grated purple yams. See
http://en.wikipedia.org/wiki/List_of_colors.
4. (a) Each Hamiltonian path has $n-1$ edges. The total number of edges of K_{n} is $\binom{n}{2}=n(n-1) / 2$. Hence the number of paths is $n / 2$, which fails to be an integer when n is odd.
(b) Let the vertices be $0,1, \ldots, n-1$. Let one of the paths P have vertices (in their order along P)

$$
0, n-1,1, n-2,2, n-3, \ldots, \frac{n}{2}
$$

Let the other paths be obtained from P by adding i to each coordinate for $i=1,2, \ldots, \frac{n}{2}-1$, and taking the sum modulo n (i.e., if the sum exceeds $n-1$ then subtract n from it). For instance, if $n=8$ then the four paths are

0	7	1	6	2	5	3	4
1	0	2	7	3	6	4	5
2	1	3	0	4	7	5	6
3	2	4	1	5	0	6	7.

We leave the verification that this works as an exercise.
Another way to describe the same solution (suggested by Y. Hu) is to put the vertices $0,1, \ldots, n-1$ in clockwise order on a circle. Let P be the zigzag path whose vertices (in order) are $0, n-1,1, n-$ $2,2, n-3,3, \ldots, \frac{1}{2} n$. Rotate the circle around the center by $2 j \pi / n$ radians for $0 \leq j \leq \frac{n}{2}-1$. Each such rotation gives one of the paths in the partition into Hamiltonian paths.

MIT OpenCourseWare
http://ocw.mit.edu

18.314 Combinatorial Analysis

Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

