18.314: SOLUTIONS TO PRACTICE HOUR EXAM \#1

(for hour exam of October 10, 2014)

1. We can partition S into 3^{n-1} three-element blocks such that the sum of the elements in each block is $(0,0, \ldots, 0)$. To do this define $\pi(1)=$ $2, \pi(2)=-3, \pi(-3)=1$. (We are just cyclically permuting the numbers $1,2,-3$.) Let the block containing $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ also contain $\left(\pi\left(a_{1}\right), \pi\left(a_{2}\right), \ldots, \pi\left(a_{n}\right)\right)$ and $\left(\pi\left(\pi\left(\left(a_{1}\right)\right), \pi\left(\pi\left(a_{2}\right)\right), \ldots, \pi\left(\pi\left(a_{n}\right)\right)\right)\right.$. For instance, when $n=4$ one of the blocks is

$$
\{(1,2,-3,2),(2,-3,1,-3),(-3,1,2,1)\} .
$$

If we choose $2 \cdot 3^{n-1}+1$ elements of S, then some three of them must be in the same block of the partition and therefore sum to $(0,0, \ldots, 0)$. Thus $f(n) \leq 2 \cdot 3^{n-1}+1$. If we choose all elements of S whose first coordinate is either 1 or 2 , then the sum of any nonempty subset of the chosen elements has positive first coordinate and therefore cannot be $(0,0, \ldots, 0)$. Since there are $2 \cdot 3^{n}$ vectors $\left(a_{1}, \ldots, a_{n}\right)$ with $a_{1}=1$ or 2, we see that $f(n)>2 \cdot 3^{n-1}$. Hence $f(n)=2 \cdot 3^{n-1}+1$.
2. The Young diagram of a self-conjugate partition of $4 n$ with even parts can be divided into $n 2 \times 2$ squares. If we replace each of these 2×2 squares with a single square, then we get the Young diagram of a selfconjugate partition of n. Conversely, given the Young diagram of a self-conjugate partition of n, replace each square with a 2×2 square to get the Young diagram of a self-conjugate partition of $4 n$ with even parts. Hence $f(4 n)=c(n)$.
3. Insert the numbers $2,4,6, \ldots, 2 n$, followed by $2 n-1,2 n-3, \ldots, 3,1$, in that order, into the cycle notation for π. We start with $(2 *)(4 *) \cdots(2 n *)$. We always write the cycles so that $2,4, \ldots, 2 n$ are the first (leftmost) elements. Then insert $2 n-1$. There is only one choice: it must be placed after $2 n$. Then insert $2 n-3$. There are three choices: after $2 n-2,2 n-1,2 n$. Then insert $2 n-5$. There are five choices: after $2 n-4,2 n-3,2 n-2,2 n-1,2 n$. Continuing in this way, we see that

$$
f(n)=1 \cdot 3 \cdot 5 \cdots(2 n-1)
$$

Another way to write this answer is $(2 n)!/ 2^{n} n!$.
4. The possible block sizes are $(3,3,3)$ and $(3,2,2,2)$. In class it was proved that the number of partitions of $[n]$ with a_{i} blocks of size i is

$$
\frac{n!}{1!^{a_{1}} 2!^{a_{2}} \cdots a_{1}!a_{2}!\cdots}
$$

Hence the number of partitions of [9] with all blocks of size 2 or 3 is equal to

$$
\frac{9!}{3!^{3} \cdot 3!}+\frac{9!}{2!^{3} \cdot 3!^{1} \cdot 1!\cdot 3!} .
$$

This turns out to be equal to 1540 .
5. For each subset S of $\{1, \ldots, n\}$, let $g(S)$ be the number of $n \times n$ matrices of 0 's and 1 's such that every row contains a 1 , and if $i \in S$ then column i does not contain a 1. Each row then has $n-i$ available positions where we can place the 1 's. Thus if $\# S=k$ then there are $2^{n-k}-1$ possibilities for each row. Hence $g(S)=\left(2^{n-k}-1\right)^{n}$. By the sieve method,

$$
\begin{aligned}
f(n) & =g(\emptyset)-\sum_{\# S=1} g(S)+\sum_{\# S=2} g(S)-\cdots+(-1)^{n} \sum_{\# S=n} g(S) \\
& =\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}\left(2^{n-k}-1\right)^{n} .
\end{aligned}
$$

(The last term is 0 and can be omitted.) This problem can also be done by writing $f(n)$ as a double sum and using the binomial theorem to reduce it to a single sum. Full credit for doing it correctly this way, though the solution above is simpler.

MIT OpenCourseWare
http://ocw.mit.edu

18.314 Combinatorial Analysis

Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

