18.314 SOLUTIONS TO PRACTICE FINAL EXAM

(for Final Exam of December 15, 2014)

1. (a) (5 points) Let $F(x)=\sum_{n \geq 0} f(n) x^{n}$. Multiply the recurrence by x^{n+2} and sum on $n \geq 0$ to get

$$
F(x)-2-4 x=4 x(F(x)-2)-2 x^{2} F(x),
$$

so

$$
\begin{aligned}
F(x) & =\frac{2-4 x}{1-4 x+2 x^{2}} \\
& =\frac{1}{1-(2+\sqrt{2}) x}+\frac{1}{1-(2-\sqrt{2}) x} .
\end{aligned}
$$

Thus

$$
f(n)=(2+\sqrt{2})^{n}+(2-\sqrt{2})^{n} .
$$

(b) (5 points) We have $2-\sqrt{2}=0.5857 \cdots$, so $0<(2-\sqrt{2})^{n}<1$ for all $n \geq 1$. It follows that

$$
\left\lfloor(2+\sqrt{2})^{n}\right\rfloor=f(n)-1 .
$$

Now $f(1)$ is even and $f(n+2)=2(2 f(n+1)-f(n))$ for $n \geq 0$, so $f(n)$ is even for $n \geq 1$. Thus $\left\lfloor(2+\sqrt{2})^{n}\right\rfloor$ is odd for $n \geq 1$. We can also see that $\left\lfloor(2+\sqrt{2})^{0}\right\rfloor=1$, which is also odd.
2. This is a situation for the exponential formula. Partition the set $[n]$ into blocks. On each block of odd size k place a cycle in $(k-1)$! ways. In each of even size place a cycle and then color red or blue in $2(k-1)$! ways. By the exponential formula,

$$
\begin{aligned}
F(x) & =\exp \left(\sum_{k \text { odd }}(k-1)!\frac{x^{k}}{k!}+2 \sum_{k \text { even }}(k-1)!\frac{x^{k}}{k!}\right) \\
& =\exp \left(\sum_{k \geq 1} \frac{x^{k}}{k}+\sum_{k \geq 1} \frac{x^{2 k}}{2 k}\right) \\
& =\exp \left(-\log (1-x)-\frac{1}{2} \log \left(1-x^{2}\right)\right) \\
& =\frac{1}{(1-x) \sqrt{1-x^{2}}}
\end{aligned}
$$

3. (a) Each tiling is a sequence of the following "primes": a 2×1 rectangle divided into two 1×1 squares, and a $2 \times k$ rectangle for $k \geq 1$. There are two primes of length one, and one prime of each length $k \geq 2$. Hence

$$
\begin{aligned}
F(x) & =\frac{1}{1-\left(2 x+x^{2}+x^{3}+x^{4}+\cdots\right)} \\
& =\frac{1}{1-x-\frac{x}{1-x}} \\
& =\frac{1-x}{1-3 x+x^{2}} .
\end{aligned}
$$

Note, One can easily deduce from this generating function that $f(n)=F_{2 n+1}$ (a Fibonacci number), but this was not part of the problem.
(b) First consider those tilings that consist only of $2 \times k$ rectangles, $k \geq$ 1. The sequence of lengths of these rectangles form a composition of n. Thus the number $a(n)$ of such tilings $a(n)$ of a $2 \times n$ rectangle is $2^{n-1}(n \geq 1)$, the number of compositions of n. Therefore

$$
\begin{aligned}
A(x) & :=\sum_{n \geq 1} a(n) x^{n} \\
& =\sum_{n \geq 1} 2^{n-1} x^{n} \\
& =\frac{x}{1-2 x} .
\end{aligned}
$$

Now consider those tilings that contain no $2 \times k$ rectangle. They have a horizontal line down the middle. Above and below the line are rectangles whose lengths form a composition of n. There are $\left(2^{n-1}\right)^{2}$ such pairs of compositions. Hence if $b(n)$ is the number of such tilings of a $2 \times n$ rectangle, then

$$
\begin{aligned}
B(x) & :=\sum_{n \geq 1} b(n) x^{n} \\
& =\sum_{n \geq 1}\left(2^{n-1}\right)^{2} x^{n} \\
& =\frac{x}{1-4 x} .
\end{aligned}
$$

An arbitrary tiling of a $2 \times n$ rectangle consists of a sequence of tilings beginning with those counted by $a(n)$ (but which may be
empty at this first step), then those counted by $b(n)$, then by $a(n)$, etc., some finite number of times. Therefore

$$
\begin{aligned}
G(x) & =(1+A(x))(B(x)+B(x) A(x)+B(x) A(x) B(x)+\cdots) \\
& =(1+A(x)) \sum_{j \geq 0}(B(x) A(x))^{j}(1+B(x)) \\
& =\frac{(1+A(x))(1+B(x))}{1-A(x) B(x)} .
\end{aligned}
$$

Substituting $A(x)=x /(1-2 x), B(x)=x /(1-4 x)$, and simplifying gives

$$
G(x)=\frac{(1-x)(1-3 x)}{1-6 x+7 x^{2}} .
$$

4. If a spanning tree T does not contain the identified edge e, then there are $m+n-2$ choices, i.e., remove any of the $m+n-2$ remaining edges. If T does contain e, then we can remove any of the remaining $m-1$ edges of the m-cycle and any of the $n-1$ remaining $n-1$ edges of the n-cycle, so $(m-1)(n-1)$ choices in all. Hence

$$
\kappa(G)=m+n-2+(m-1)(n-1)=m n-1 .
$$

A somewhat more direct argument is to remove any edge of the m cycle and any edge of the n-cycle in $m n$ ways. This gives a spanning tree except when we choose the identified edge e both times, so we get $m n-1$ trees in all.
5. We know (Exercise 11.12 on page 266, done in class) that G has a complete matching M. When we remove M from G we still have a regular bipartite graph (of degree $d-1 \geq 1$), so we have another matching M^{\prime} disjoint from M. The union of M and M^{\prime} is a disjoint union of cycles [why?].
6. The chromatic polynomial of a 4-cycle C_{4} was computed in class and is easy to do in several different ways. We get

$$
\chi_{C_{4}}(n)=n^{4}-4 n^{3}+6 n^{2}-3 n .
$$

For each of the other four vertices we have $n-2$ choices of colors. Hence

$$
\chi_{G}(n)=\left(n^{4}-4 n^{3}+6 n^{2}-3 n\right)(n-2)^{4}
$$

7. (a) If a planar embedding without isthmuses has f_{i} faces with i sides, then $2 E=\sum i f_{i}$. (See equation (12.2) on page 280.) Hence

$$
2 E=3+4+5+6+7+8=33
$$

contradicting that E is an integer.
(b) Now we get $2 E=3+4+5+6+7+8+9=42$, so $E=21$. Since $F=7$ we get from $V-E+F=2$ that $V=16$. To show that such a graph actually exists, we have to construct it. For instance, we could put the 9 -sided face f on the outside and the 7 -sided face completely inside f. This leads to

This is by no means the only graph meeting the conditions of the problem.
8. We claim that $n=5$. We can easily two-color the edges of K_{4} so that there is no monochromatic path of length three: color the edges of a triangle red and the remaining three edges blue. Hence $n \geq 5$. Consider now K_{5} with vertices $1,2,3,4,5$. The four cycle with edges 12 , 23, 34, 14 must have two red and two blue edges; otherwise it already has a monochromatic path of length three. If the two red edges don't have a common vertex then one of the paths $\{12,34,13\}$ or $\{23,14,13\}$ is monochromatic. Thus we can assume that the 4 -cycle has two red edges with a common vertex and two blue edges with a common vertex. Suppose that the red edges are 12,23 and the blue edges are 34,14 . Then one of the paths $\{12,23,35\}$ and $\{34,14,35\}$ is monochromatic. (I'm sure there must be many other arguments.)

MIT OpenCourseWare
http://ocw.mit.edu

18.314 Combinatorial Analysis

Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

