Course 18.312: Algebraic Combinatorics

Lecture Notes \#29-31 Addendum by Gregg Musiker
April 24th - 29th, 2009

The following material can be found in several sources including Sections 14.914.13 of "Algebraic Graph Theory" by Chris Godsil and Gordon Royle, as well as the papers "Chip-firing Games on Graphs" by Anders Björner, Lásló Lovász, and Peter Shor (1991), and "Chip-firing and the Critical Group of a Graph" by Norman Biggs (1999).

1 Chip-Firing on an undirected graph

Throughout these notes, let $G=(V, E)$ be a finite connected undirected graph without loops. Assign a nonnegative integer $C(v)$ to each vertex v of G. We say that vertex v has $C(V)$ chips on it and call this assignment a chip configuration. Let N denote the total number of chips, i.e.

$$
\sum_{v \in V(G)} C(v)=N
$$

Definition. If a vertex v has at least as many chips on it as its degree, i.e. $C(v) \geq \operatorname{deg}(v)$, we say that v is ready to fire.

Definition. A vertex v that is ready to fire may send chips to its neighbors by sending one chip along each of its incident edges.

Definition. Given graph G, we say that a chip configuration C is stable if no vertex is ready to fire, i.e. if $C(v)<\operatorname{deg}(v)$ for all vertices $v \in V(G)$.

Question. Given an initial chip configuration C on graph G, does C reduce to a stable chip-configuration, and if so, can we describe the possible stable states that are reachable? In particular, can the chip-firing process, i.e. the game, go on indefinitely or will it terminate in finite time?

Theorem. [Björner, Lovász, and Shor (1991)]
a) If $N>2|E|-|V|$ then the game is infinite.
b) If $N<|E|$, then the configuration reduces to a unique stable configuration (that does not depend on the choice of which vertices are fired).
c) If $|E| \leq N \leq 2|E|-|V|$, then there exists some initial chip configuration which leads to an infinite process, and some other initial configuration which terminates in finite time (and terminates to a stable configuration which does not depend on the choice of the order vertices are fired).

Proof of Theorem. We start by showing that if $N \leq 2|E|-|V|$, then there exists an initial configuration that is stable. Namely, if $N=2|E|-|V|$, we can let $C(v)=\operatorname{deg}(v)-1$ for each vertex $v \in V(G)$. (Recall that $\sum_{v \in V(G)} \operatorname{deg}(v)=2|E|$.) If $N<2|E|-|V|$, we simply take away chips from some of the vertices. Note that this shows the second half of (c).

On the other hand, if $N>2|E|-|V|$ then even if we try to flatten the chip configuration as much as possible, there must be at least one vertex v^{\prime} such that $C\left(v^{\prime}\right) \geq \operatorname{deg}\left(v^{\prime}\right)$. Thus C is not stable and v^{\prime} can fire. However, firing does not change the total number of chips, and hence this process will go on forever in this case and we have proven (a).

To see (b), we consider an acyclic orientation \mathcal{O} on graph G, that is we orient the edges of G in such a way so that there are no cycles. This will always be possible. Let

$$
T=\sum_{v \in V(G)} \max \left(0, \quad C(v)-\text { outdeg }_{\mathcal{O}}(v)\right)
$$

where outdeg $\mathcal{O}_{\mathcal{O}}(v)$ is the number of outgoing edges from vertex v with respect to the chosen acyclic orientation.

Note that $\sum_{v \in V(G)}$ outdeg $_{\mathcal{O}}(v)=|E|$ and since we are assuming that $N<|E|$, there exits at least one vertex $v \in V(G)$ such that $C(v)<\operatorname{outdeg}_{\mathcal{O}}(v)$. We use this quantity T to show that the firing process must terminate: assume that C is an initial configuration with chip total $N<|E|$ and that vertex v_{1} is ready to fire. (If there is no such v_{1} to fire, then C is already stable and finite termination has been achieved.)

Fire v_{1} and reverse the orientation of all edges leaving v_{1}. Call this new orientation \mathcal{O}^{\prime} and new chip configuration C^{\prime}. This turns v_{1} into a sink and cannot create a cycle. Moreover, the quantity T will never be increased by this change and will in fact decrease if there is a new vertex u with $C^{\prime}(u)<\operatorname{outdeg}_{\mathcal{O}^{\prime}}(u)$. Since T is nonnegative, this quantity can only decrease a finite number of times. However, it only
takes a finite number of firings to create a new vertex u with a small enough $C^{\prime}(u)$, so it follows that for such an initial C, a stable configuration must be reachable. We omit the proof that the stable configuration reached is unique. This shows (b) (except for uniqueness).

We use a similar technique to exhibit a chip configuration leading to an infinite game whenever $N \geq|E|$. (In fact we assume $N=|E|$ since adding chips can never enhance a configuration's stability.) In particular, let \mathcal{O} be an acyclic orientation, and put outdeg $\mathcal{O}^{(v)}$ chips on each vertex. Call this configuration $C_{\mathcal{O}}$. Before proceeding further we need the following Lemma about such orientations.

Lemma. In an acyclic orientation on a finite graph, there is at least one vertex that is a sink and one that is a source.

Proof of Lemma. Suppose otherwise. Then each vertex v has at least one outgoing edge. Pick v_{1} arbitrarily and follow one of the outgoing edges of v_{1} and let v_{2} denote the adjacent vertex. Then v_{2} will also have at least one outgoing edge and so we continue this process. However, since there are a finite number of vertices, we must eventually revisit a vertex which would imply the orientation was not acyclic. Similar logic shows that there is a source.

Let v be the source of \mathcal{O}, and note that v can fire since $C(v)=\operatorname{deg}(v)$. We reverse all edges incident to this source and then get a new acyclic orientation with a new source v^{\prime}. We then can fire v^{\prime} and continue indefinitely in this way. This proves the first part of (c) and finishes the proof.

Remark: While we did not give the details in this proof, part of the theorem is the fact that whether or not a configuration stabilizes or not and what configuration it stabilizes to does not depend on the choice of ordering of the firing vertices but only on the initial configuration.

2 The Dollar game: Chip-firing with a sink vertex

We now designate one of the vertices v_{0} to be special, i.e. a sink vertex.
New Firing Rule for v_{0} : Vertex v_{0} can fire if and only if the rest of the configuration C is stable.

Given a graph G (finite, undirected, loopless, connected) and $v_{0} \in V(G)$ we say
that a chip configuration C is an assignment of a nonnegative integer to each $v \in V(G) \backslash\left\{v_{0}\right\}$. We say that such a configuration is stable (v_{0}-stable if the choice of v_{0} ambiguous) if $C(v)<\operatorname{deg}(v)$ for each $v \in V(G) \backslash\left\{v_{0}\right\}$.

In particular, we do not think of v_{0} having chips on it but instead it is a black hole that can absorb chips from the rest of the system.

Claim: If G is finite and connected, then for any initial chip configuration, there is a sequence of legal firings that results in a stable configuration.

Sketch of Proof: We prove this inductively on the radius of G with respect to v_{0}, i.e. the size of the longest minimal path between v_{0} and any other vertex $v \in V(G)$. When neighbors of v_{0} fire, the total number of chips in the system decreases and eventually is small enough so that the configuration stabilizes. When neighbors of v_{0} 's neighbors fire, eventually one of v_{0} 's neighbors has enough chips on it so that it is ready to fire.

Definition. A configuration C is recurrent if there is a legal firing sequence (including v_{0} firing) such that C recurs.

Definition. A configuration C is critical if it is both stable and recurrent.

Theorem. (Uniqueness) Given an initial configuration C, there exists a unique critical configuration that is reachable via a legal firing sequence.

Proof. The proof of this Theorem is deferred to the next section.
We use this theorem to give a group structure to the set of critical configurations.
Definition. We let $K\left(G, v_{0}\right)$ denote the critical group of graph G with respect to the sink vertex v_{0}. This group is given as the set of critical configurations of G (with respect to v_{0}) with the group law given by

$$
C_{1} \oplus C_{2}:=\overline{C_{1}+C_{2}} .
$$

Here $C_{1}+C_{2}$ is pointwise addition of chip assignments to vertices and \bar{C} denotes the unique critical configuration reachable from C.

Theorem. We have the isomorphism of groups

$$
K\left(G, v_{0}\right) \cong \mathbb{Z}^{|V(G)|-1} / \operatorname{Im} L_{0}\left(G, v_{0}\right)
$$

where $L_{0}\left(G, v_{0}\right)$ denotes the reduced Laplacian matrix of graph G with the row and column corresponding to vertex v_{0} deleted. Thus $K\left(G, v_{0}\right)$ is an abelian group.

Proof. Sketched in class, follows from the fact that firing a vertex corresponds to subtracting the corresponding column of the reduced Laplacian matrix.

Corollary 1. The number of critical configurations of undirected connected finite graph G with respect to v_{0} is independent of v_{0}, and equals the number of spanning trees of G.

Corollary 2. We can use Smith Normal Form of $L_{0}\left(G, v_{0}\right)$ to compute the decomposition of $K\left(G, v_{0}\right)$ into a product of cyclic subgroups.

Definition. We say that two matrices M and M^{\prime} have the same Smith normal form if we can change M to M^{\prime} by the following three transformations:
(1) Add an integer multiple of one row or column to another.
(2) Multiply a row or column by (-1).
(3) Interchange two rows or two columns.

Theorem. (1) If M and M^{\prime} are integer matrices with k (resp. k^{\prime} columns), the groups $\mathbb{Z}^{k} / \operatorname{Im} M$ and $\mathbb{Z}^{k^{\prime}} / \operatorname{Im} M^{\prime}$ are isomorphic if and only if M and M^{\prime} have the same Smith Normal Form.
(2) Any integer matrix M has the same Smith normal form as a "diagonal" rectangular matrix D with d_{i} 's on the diagonal such that $d_{i} \mid d_{j}$ for any $i \leq j$. In particular,

$$
\mathbb{Z}^{k} / \operatorname{Im} D \cong \mathbb{Z} / d_{1} \mathbb{Z} \times \mathbb{Z} / d_{2} \mathbb{Z} \times \cdots \times \mathbb{Z} / d_{n} \mathbb{Z}
$$

3 Proof of the Uniqueness Theorem

Before proving the theorem showing uniqueness of a critical configuration, we introduce some notation. Given an undirected graph G, we let $D=D(G)$ denote a digraph on the same set of vertices and edges as G, only with an orientation arbitrarily chosen for each edge. Note that the choice of orientation will not be relevant and that we are not replacing each undirected edge with a pair of directed edges.

Definition. Let G, and hence D, have n vertices and m edges. We let $\partial=\partial(D)$ denote the incidence matrix of D, which is the $n \times m$ matrix with (i, j) th entry given as

$$
\partial_{i j}=\left\{\begin{aligned}
-1 & \text { if vertex } v_{i} \text { is the tail of edge } e_{j} \\
1 & \text { if vertex } v_{i} \text { is the head of edge } e_{j} \\
0 & \text { otherwise }
\end{aligned}\right.
$$

Lemma. The Laplacian matrix is given as the product

$$
L(G)=L(D)=\partial(D) \cdot(\partial(D))^{T}
$$

Proof. For any $n \times m$ matrix A, it follows that

$$
\left(A A^{T}\right)_{i j}=\sum_{e=1}^{m} a_{i e} a_{e j}^{T}=\sum_{e=1}^{m} a_{i e} a_{j e} .
$$

Since edge e is of the form $v_{i} \longrightarrow v_{j}$ or $v_{i} \longleftarrow v_{j}$, and both contribute a (-1) to this sum and any other edge contributes a zero, it follows that $\partial \partial_{i j}^{T}=-m_{i j}(G)$ whenever $i \neq j$. (We remind the reader that $m_{i j}$ denotes the number of undirected edges between v_{i} and v_{j} in G.) By similar logic, we see that $\partial \partial_{i i}^{T}=\sum_{e=1}^{m} \partial_{i e}^{2}=\operatorname{deg}\left(v_{i}\right)$, thus completing the proof.

We can think of matrix $L(G)$ as a linear transformation from $\mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n}$.
Lemma. If G is a finite connected graph, the kernel of $L(G)$ is spanned by the all ones vector $[1,1, \ldots, 1]^{T}$.

Proof. Let $w \in \mathbb{Z}^{n}$. We use the fact that $L(G)=\partial \partial^{T}$ to obtain

$$
L(G) w=0 \longleftrightarrow \partial \partial^{T} w=0 .
$$

Furthermore, ∂^{T} is a linear transformation from $\mathbb{Z}^{n} \rightarrow \mathbb{Z}^{m}$ which takes in a vector $\left[w_{1}, w_{2}, \ldots, w_{n}\right]^{T} \in \mathbb{Z}^{|V|}$ and assigns a value $w_{i}-w_{j}$ to each edge e from v_{j} to v_{i}. Hence $\partial^{T} w=0$ if and only if all of the potential differences are zero. Since G is connected, this means the potential, i.e. the value C_{i} at each vertex must be constant throughout the graph.

Furthermore, we let Δ_{e} denote the potential difference along edge e and then obtain

$$
w^{T} L(G) w=w^{T} \partial \partial^{T} w=\left(\partial^{T} w\right)^{T}\left(\partial^{T} w\right)=\sum_{e=1}^{m} \Delta_{e}^{2}
$$

As a consequence, $L(G) w=0$ implies that $\partial^{T} w=0$, and the converse is more easily seen to be true. This completes the proof that the kernel of $L(G)$ is spanned by the all ones vector.

Given an integer vector $w \in \mathbb{Z}^{|V|}$ and a choice of sink vertex v_{0}, we can subtract the $\left(v_{0}\right)$ th column of the Laplacian matrix a sufficient number of times until the integer assigned to each other $v \in V(G) \backslash\left\{v_{0}\right\}$ is nonnegative. In this way, we can turn any such integer vector into a chip configuration C on $V(G) \backslash\left\{v_{0}\right\}$. We thus wish to show that there exists a unique critical configuration in the same coset (i.e. same orbit under action of adding columns of Laplacian matrix) as C. We now introduce some useful notation.

Starting with an initial chip configuration C, we let $C^{\left(v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{\ell}}\right)}$ denote the configuration obtained after the vertices $v_{i_{1}}$ through $v_{i_{\ell}}$ fire. We say that $\mathcal{X}=$ $\left(v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{\ell}}\right) \in V(G)^{\ell}$ is a legal firing sequence if \mathcal{X} does not contain v_{0} and no vertex goes into deficit along the way, that is for every j, the number of chips on $v_{i_{j}}$ in configuration $C^{\left(v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{j-1}}\right)}$ is greater than or equal to the degree of $v_{i_{j}}$.

We define the score of \mathcal{X} to be $\mathbf{x}=\left(x_{1}, \ldots, x_{|V|-1}\right)$ if vertex v_{i} appears x_{i} times in \mathcal{X}.

If \mathcal{Y} is another legal firing sequence (also not containing v_{0}), with score given by vector \mathbf{y}, then we let $\mathcal{X} \backslash \mathcal{Y}$ denote the sequence obtained from \mathcal{X} by deleting the first y_{i} occurrences of vertex v_{i}. (If $x_{i} \leq y_{i}$ then we delete all occurrences.) Lastly, we denote the concatenation of sequence \mathcal{X} followed by \mathcal{Y} as $(\mathcal{X}, \mathcal{Y})$.

Proposition. Let C be an initial unstable configuration, and \mathcal{X}, \mathcal{Y} both be legal firing sequences not containing v_{0}. Then $(\mathcal{Y}, \mathcal{X} \backslash \mathcal{Y})$ is also a legal firing sequence and has score equal to z where $z_{i}=\max \left\{x_{i}, y_{i}\right\}$ for all $i \in\{1,2, \ldots,|V|-1\}$.

We prove this Proposition momentarily. As an application we show that if \mathcal{X} and \mathcal{Y} are both legal firing sequences for an initial configuration C, then there is a configuration, $C^{\mathcal{Z}}$, which is reachable from both $C^{\mathcal{X}}$ and $C^{\mathcal{Y}}$.

Namely, the concatenations $(\mathcal{Y}, \mathcal{X} \backslash \mathcal{Y})$ and $(\mathcal{X}, \mathcal{Y} \backslash \mathcal{X})$ are both legal by the Lemma, and have the same score. Thus letting $\mathcal{Z}=(\mathcal{Y}, \mathcal{X} \backslash \mathcal{Y})$, we find $C^{\mathcal{Z}}$ satisfies the desired hypothesis.

In particular, if $C^{\mathcal{X}}$ and $C^{\mathcal{Y}}$ are both stable configurations, there are legal firing sequences \mathcal{X}^{\prime} and \mathcal{Y}^{\prime} not containing v_{0} so that $C^{\left(\mathcal{X}, \mathcal{X}^{\prime}\right)}=C^{\left(\mathcal{Y}, \mathcal{Y}^{\prime}\right)}$. However, since the only legal firing sequence not containing v_{0} following a stable configuration is the empty sequence, we must have that $C^{\mathcal{X}}=C^{\mathcal{Y}}$. In particular, we have shown that
there is a unique stable configuration reachable from any unstable initial configuration C. Further, it is well-defined when one can let vertex v_{0} fire, i.e. if and only if no other vertex can fire.

Now we must show that there is at most one stable configuration that recurs. Let C be a recurrent configuration. That means there exists a nonzero vector \mathbf{x}, the score of a firing sequence \mathcal{X}, such that $C=C-L(G) \mathbf{x}$. Since we know that the kernel of $L(G)$ is spanned by the all ones vector, we know that such an \mathbf{x} must be a positive integral multiple of the all ones vector. However, we can in fact say more strongly:

Lemma. Given stable recurrent C, i.e. $C=C-L(G) \mathbf{x}$ where \mathbf{x} is the score of a legal firing sequence, then \mathbf{x} may be the all ones vector.

Proof. Since C is stable, the firing sequence must start with v_{0} firing. Assume that there is a legal firing sequence (from $C^{\left(v_{0}\right)}$) where one of the vertices appears more than once. Without loss of generality, assume that v_{1} is the first vertex which appears twice in the sequence, and call the configuration \hat{C} right before v_{1} fires for the second time. Since C was stable, $C_{1} \leq \operatorname{deg}\left(v_{1}\right)-1$. When v_{0} fires, this may increase the number of chips on v_{1} (if v_{0} is a neighbor of v_{1}), and v_{1} 's neighbors may subsequently fire, but they each fire at most once. Since we have assumed that v_{1} has already fired a first time, we have that $\hat{C}_{1}=C_{1}-\operatorname{deg}\left(v_{1}\right)+d_{1, v_{0}}+$ $\sum_{v_{i} \text { is a neighbor of } v_{1} \text { which has fired }} d_{1, i}$. However, this sum (including v_{0} as a possible neighbor) is less than or equal to $\operatorname{deg}\left(v_{1}\right)$, and consequently $\hat{C}_{1} \leq C_{1} \leq \operatorname{deg}\left(v_{1}\right)-1$. Thus v_{1} cannot fire a second time, and we have a contradiction.

As a consequence, any legal firing sequence contains each vertex at most once. Another way of saying this is that vertex v_{0} must fire a second time before any other vertex does. If v_{0} and all other vertices have fired, we are done since we have the all ones vector and we clearly have returned to C. On the other hand, if we obtain a stable configuration earlier, once v_{0} fires a second time, any vertex that has not already fired will never be able to catch up to v_{0}. But we should eventually get to a multiple of the all ones vector, so we must have been in the first case.

Note that given stable recurrent configuration C we let v_{0} fire to obtain $C^{\left(v_{0}\right)}$ and we have shown that the subsequent firing of $\left(v_{i_{1}}, \ldots, v_{i_{n-1}}\right),\left(i_{1}, i_{2}, \ldots, i_{n-1}\right)$ is a permutation of $\{1,2, \ldots, n-1\}$ that exactly undoes the firing of v_{0}. This means that C is the first stable configuration reached after reducing. Thus the first recurrent stable configuration reached will subsequently recur from then on as the only stable
configuration ever reached again. Thus, it is the only critical configuration.
Proof of Proposition. We now end the proof of the Theorem by including the proof of the remaining Proposition, which we prove by induction on the length of $\mathcal{X} \backslash \mathcal{Y}$. Without loss of generality, assume that $\mathcal{X} \backslash \mathcal{Y}$ starts with v_{1}. Let $\overline{\mathcal{X}}$ denote the truncated sequence which ends right before the $\left(y_{1}+1\right)$ st appearance of v_{1} in \mathcal{X}. Clearly $\overline{\mathcal{X}}$ is legal as well, and has score \bar{x} satisfying

$$
\overline{x_{1}}=y_{1}, \quad \overline{x_{i}} \leq y_{i} \quad \text { for } 1<i \leq n .
$$

Thus the coordinate

$$
\begin{aligned}
\left(C^{\mathcal{Y}}\right)_{1} & =C_{1}-d_{1} y_{1}+\sum_{i=2}^{n} d_{i, 1} y_{i} \geq \\
\left(C^{\bar{X}}\right)_{1} & =C_{1}-d_{1} \overline{x_{1}}+\sum_{i=2}^{n} d_{i, 1} \overline{x_{i}} \\
& \geq \operatorname{deg}\left(v_{1}\right)
\end{aligned}
$$

since vertex v_{1} is about to be fired again in sequence \mathcal{X}. Thus v_{1} can be fired again after \mathcal{Y} as well and so $\left(\mathcal{Y}, v_{1}\right)$ is legal as well. We now repeat the argument for \mathcal{X} and $\left(\mathcal{Y}, v_{1}\right)$ until we have shown the entire sequence $(\mathcal{Y}, \mathcal{X} \backslash \mathcal{Y})$ is legal.

4 Chip-Firing on Directed Graphs

For more on chip-firing, including chip-firing on directed graphs, we invite the reader to look at the papers "Chip-Firing Games on Directed Graphs" by Anders Bj orner and Lásló Lovász (1992) as well as "Chip-Firing and Rotor-Routing on Directed Graphs" by Alexander Holroyd, Lionel Levine, Karola Mézáros, Yuval Peres, James Propp, and Daivd Wilson (2008).

Much of the theory that we have developed for undirected graphs G also works for digraphs D but not always. In this section, we give a glimpse of some of the aspects of chip-firing on digraphs.

First of all, the notion of sending chips to ones' neighbors is easily adapted in this case. We use the directed Laplacian matrix whose diagonal entries are the outdegrees and the off-diagonal entries are the number of directed edges between a given pair of vertices. As in the undirected case, we assume our graph is loop-less and finite. Recall that we may turn any undirected graph into a digraph by replacing each edge with a pair of oppositely directed edges.

Since $L(D)$ is not necessarily symmetric, it does not easily decompose into a product $A A^{T}$ like in the previous section. Note that the definition of the incidence matrix also is now problematic since our edges already have orientations. However there are two hypotheses for which most of the undirected theory goes through.

Definition. We say that a digraph has a global sink s if all vertices $v \in$ $V(D) \backslash\{s\}$ have an edge $v \longrightarrow s$ incident to it and s contains no outgoing edges.

Lemma. If digraph D has a global sink, then every chip configuration on D stabilizes.

Proof. Omitted, see Lemma 2.4 of [Holroyd-Levine-Mézáros-Peres-Propp-Wilson].
In fact, there are several other results of this flavor where the presence of a global sink ensures that the chip-firing process runs similar to the undirected case. The other common hypothesis we have already seen in our class.

Lemma. (Burning algorithm due to Dhar (1990)) If a digraph D is Eulerian (i.e. connected and balanced) with a sink vertex v_{0} then a chip configuration C is recurrent if and only if the stabilization $\overline{C+\beta}=C$ where

$$
\beta(v)=\operatorname{outdedg}(v)-\operatorname{indeg}(v) \geq 0 .
$$

Furthermore, if C is recurrent, then each vertex fires exactly once during the stabilization of $C+\beta$.

Remark. Here by stabilization we would first fire sink v_{0} if $C+\beta$ were already stable and stop at the next stable configuration reached.

MIT OpenCourseWare
http://ocw.mit.edu

18.312 Algebraic Combinatorics

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

