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Course 18.312: Algebraic Combinatorics


Lecture Notes #29-31 Addendum by Gregg Musiker 

April 24th - 29th, 2009 

The following material can be found in several sources including Sections 14.9

14.13 of “Algebraic Graph Theory” by Chris Godsil and Gordon Royle, as well as 

the papers “Chip-firing Games on Graphs” by Anders Björner , Lásló Lovász, and 

Peter Shor (1991), and “Chip-firing and the Critical Group of a Graph” by Norman 

Biggs (1999). 

1 Chip-Firing on an undirected graph 

Throughout these notes, let G = (V, E) be a finite connected undirected graph 

without loops. Assign a nonnegative integer C(v) to each vertex v of G. We say 

that vertex v has C(V ) chips on it and call this assignment a chip configuration. 

Let N denote the total number of chips, i.e. 

C(v) = N. 
v∈V (G) 

Definition. If a vertex v has at least as many chips on it as its degree, i.e. 

C(v) ≥ deg(v), we say that v is ready to fire. 

Definition. A vertex v that is ready to fire may send chips to its neighbors by 

sending one chip along each of its incident edges. 

Definition. Given graph G, we say that a chip configuration C is stable if no 

vertex is ready to fire, i.e. if C(v) < deg(v) for all vertices v ∈ V (G). 

Question. Given an initial chip configuration C on graph G, does C reduce 

to a stable chip-configuration, and if so, can we describe the possible stable states 

that are reachable? In particular, can the chip-firing process, i.e. the game, go on 

indefinitely or will it terminate in finite time? 
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Theorem. [Björner , Lovász, and Shor (1991)] 

a) If N > 2|E| − |V | then the game is infinite. 

b) If N < |E|, then the configuration reduces to a unique stable configuration 

(that does not depend on the choice of which vertices are fired). 

c) If |E| ≤ N ≤ 2|E|−|V |, then there exists some initial chip configuration which 

leads to an infinite process, and some other initial configuration which terminates 

in finite time (and terminates to a stable configuration which does not depend on 

the choice of the order vertices are fired). 

Proof of Theorem. We start by showing that if N ≤ 2|E| − |V |, then there 

exists an initial configuration that is stable. Namely, if N = 2|E| − |V |, we can let 

C(v) = deg(v)− 1 for each vertex v ∈ V (G). (Recall that v∈V (G) deg(v) = 2|E|.) 

If N < 2|E| − |V |, we simply take away chips from some of the vertices. Note that 

this shows the second half of (c). 

On the other hand, if N > 2|E| − |V | then even if we try to flatten the chip 
′ configuration as much as possible, there must be at least one vertex v such that 

C(v ′ ) ≥ deg(v ′ ). Thus C is not stable and v ′ can fire. However, firing does not 

change the total number of chips, and hence this process will go on forever in this 

case and we have proven (a). 

To see (b), we consider an acyclic orientation O on graph G, that is we orient the 

edges of G in such a way so that there are no cycles. This will always be possible. 

Let 
( ) 

T = max 0, C(v)− outdegO(v) 
v∈V (G) 

where outdegO(v) is the number of outgoing edges from vertex v with respect to the 

chosen acyclic orientation. 

Note that outdegO(v) = |E| and since we are assuming that N < |E|,v∈V (G)

there exits at least one vertex v ∈ V (G) such that C(v) < outdegO(v). We use this 

quantity T to show that the firing process must terminate: assume that C is an 

initial configuration with chip total N < |E| and that vertex v1 is ready to fire. (If 

there is no such v1 to fire, then C is already stable and finite termination has been 

achieved.) 

Fire v1 and reverse the orientation of all edges leaving v1. Call this new orienta

tion O ′ and new chip configuration C ′ . This turns v1 into a sink and cannot create 

a cycle. Moreover, the quantity T will never be increased by this change and will in 

fact decrease if there is a new vertex u with C ′ (u) < outdegO′ (u). Since T is non

negative, this quantity can only decrease a finite number of times. However, it only 



takes a finite number of firings to create a new vertex u with a small enough C ′ (u), 

so it follows that for such an initial C, a stable configuration must be reachable. 

We omit the proof that the stable configuration reached is unique. This shows (b) 

(except for uniqueness). 

We use a similar technique to exhibit a chip configuration leading to an infi

nite game whenever N ≥ |E|. (In fact we assume N = |E| since adding chips can 

never enhance a configuration’s stability.) In particular, let O be an acyclic orienta

tion, and put outdegO(v) chips on each vertex. Call this configuration CO. Before 

proceeding further we need the following Lemma about such orientations. 

Lemma. In an acyclic orientation on a finite graph, there is at least one vertex 

that is a sink and one that is a source. 

Proof of Lemma. Suppose otherwise. Then each vertex v has at least one 

outgoing edge. Pick v1 arbitrarily and follow one of the outgoing edges of v1 and let 

v2 denote the adjacent vertex. Then v2 will also have at least one outgoing edge and 

so we continue this process. However, since there are a finite number of vertices, we 

must eventually revisit a vertex which would imply the orientation was not acyclic. 

Similar logic shows that there is a source. 

Let v be the source of O, and note that v can fire since C(v) = deg(v). We 

reverse all edges incident to this source and then get a new acyclic orientation with 
′ ′ a new source v . We then can fire v and continue indefinitely in this way. This 

proves the first part of (c) and finishes the proof. 

Remark: While we did not give the details in this proof, part of the theorem is 

the fact that whether or not a configuration stabilizes or not and what configuration 

it stabilizes to does not depend on the choice of ordering of the firing vertices but 

only on the initial configuration. 

2 The Dollar game: Chip-firing with a sink vertex 

We now designate one of the vertices v0 to be special, i.e. a sink vertex. 

New Firing Rule for v0: Vertex v0 can fire if and only if the rest of the 

configuration C is stable. 

Given a graph G (finite, undirected, loopless, connected) and v0 ∈ V (G) we say 
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that a chip configuration C is an assignment of a nonnegative integer to each 

v ∈ V (G) \ {v0}. We say that such a configuration is stable (v0-stable if the choice 

of v0 ambiguous) if C(v) < deg(v) for each v ∈ V (G) \ {v0}. 

In particular, we do not think of v0 having chips on it but instead it is a black 

hole that can absorb chips from the rest of the system. 

Claim: If G is finite and connected, then for any initial chip configuration, there 

is a sequence of legal firings that results in a stable configuration. 

Sketch of Proof: We prove this inductively on the radius of G with respect 

to v0, i.e. the size of the longest minimal path between v0 and any other vertex 

v ∈ V (G). When neighbors of v0 fire, the total number of chips in the system 

decreases and eventually is small enough so that the configuration stabilizes. When 

neighbors of v0’s neighbors fire, eventually one of v0’s neighbors has enough chips 

on it so that it is ready to fire. 

Definition. A configuration C is recurrent if there is a legal firing sequence 

(including v0 firing) such that C recurs. 

Definition. A configuration C is critical if it is both stable and recurrent. 

Theorem. (Uniqueness) Given an initial configuration C, there exists a 

unique critical configuration that is reachable via a legal firing sequence. 

Proof. The proof of this Theorem is deferred to the next section. 

We use this theorem to give a group structure to the set of critical configurations. 

Definition. We let K(G, v0) denote the critical group of graph G with respect 

to the sink vertex v0. This group is given as the set of critical configurations of G 

(with respect to v0) with the group law given by 

C1 ⊕ C2 := C1 + C2. 

Here C1 + C2 is pointwise addition of chip assignments to vertices and C denotes 

the unique critical configuration reachable from C. 

Theorem. We have the isomorphism of groups 

K(G, v0) ∼ Z
|V (G)|−1 Im L0(G, v0)= 
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where L0(G, v0) denotes the reduced Laplacian matrix of graph G with the row and 

column corresponding to vertex v0 deleted. Thus K(G, v0) is an abelian group. 

Proof. Sketched in class, follows from the fact that firing a vertex corresponds 

to subtracting the corresponding column of the reduced Laplacian matrix. 

Corollary 1. The number of critical configurations of undirected connected 

finite graph G with respect to v0 is independent of v0, and equals the number of 

spanning trees of G. 

Corollary 2. We can use Smith Normal Form of L0(G, v0) to compute the 

decomposition of K(G, v0) into a product of cyclic subgroups. 

′ Definition. We say that two matrices M and M have the same Smith normal 
′ form if we can change M to M by the following three transformations: 

(1) Add an integer multiple of one row or column to another. 

(2) Multiply a row or column by (−1). 

(3) Interchange two rows or two columns. 

Theorem. (1) If M and M ′ are integer matrices with k (resp. k ′ columns), the 

′ ′ groups Zk Im M and Zk ′ Im M are isomorphic if and only if M and M have 

the same Smith Normal Form. 

(2) Any integer matrix M has the same Smith normal form as a “diagonal” 

rectangular matrix D with di’s on the diagonal such that di|dj for any i ≤ j. In 

particular, 
∼Z

k/Im D = Z/d1Z × Z/d2Z × · · · × Z/dnZ. 

3 Proof of the Uniqueness Theorem 

Before proving the theorem showing uniqueness of a critical configuration, we in

troduce some notation. Given an undirected graph G, we let D = D(G) denote a 

digraph on the same set of vertices and edges as G, only with an orientation arbi

trarily chosen for each edge. Note that the choice of orientation will not be relevant 

and that we are not replacing each undirected edge with a pair of directed edges. 
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Definition. Let G, and hence D, have n vertices and m edges. We let ∂ = ∂(D) 

denote the incidence matrix of D, which is the n × m matrix with (i, j)th entry 

given as 
 

 

 

−1 if vertex vi is the tail of edge ej 

∂ij = 1 if vertex vi is the head of edge ej . 
 

 

0 otherwise 

Lemma. The Laplacian matrix is given as the product 

L(G) = L(D) = ∂(D) · (∂(D))T . 

Proof. For any n × m matrix A, it follows that 

m m 

(AAT )ij = T =aieaej aieaje. 
e=1 e=1 

Since edge e is of the form vi −→ vj or vi ←− vj , and both contribute a (−1) to this 

sum and any other edge contributes a zero, it follows that ∂∂T = −mij (G) whenever ij 

i 6 j. (We remind the reader that mij = denotes the number of undirected edges 

between vi and vj in G.) By similar logic, we see that ∂∂T = 
∑m ∂2 = deg(vi), ii e=1 ie 

thus completing the proof. 

We can think of matrix L(G) as a linear transformation from Zn → Zn . 

Lemma. If G is a finite connected graph, the kernel of L(G) is spanned by the 

all ones vector [1, 1, . . . , 1]T . 

Proof. Let w ∈ Zn . We use the fact that L(G) = ∂∂T to obtain 

L(G)w = 0 ←→ ∂∂T w = 0. 

Furthermore, ∂T is a linear transformation from Zn → Zm which takes in a vector 

[w1, w2, . . . , wn]
T ∈ Z|V | and assigns a value wi − wj to each edge e from vj to vi. 

Hence ∂T w = 0 if and only if all of the potential differences are zero. Since G is 

connected, this means the potential, i.e. the value Ci at each vertex must be constant 

throughout the graph. 

Furthermore, we let Δe denote the potential difference along edge e and then 

obtain 
m 

w T L(G)w = w T ∂∂T w = (∂T w)T (∂T w) = Δe
2 . 

e=1 



As a consequence, L(G)w = 0 implies that ∂T w = 0, and the converse is more easily 

seen to be true. This completes the proof that the kernel of L(G) is spanned by the 

all ones vector. 

Given an integer vector w ∈ Z|V | and a choice of sink vertex v0, we can subtract 

the (v0)th column of the Laplacian matrix a sufficient number of times until the 

integer assigned to each other v ∈ V (G) \ {v0} is nonnegative. In this way, we can 

turn any such integer vector into a chip configuration C on V (G) \ {v0}. We thus 

wish to show that there exists a unique critical configuration in the same coset (i.e. 

same orbit under action of adding columns of Laplacian matrix) as C. We now 

introduce some useful notation. 
,vi2 ,...,viℓStarting with an initial chip configuration C, we let C(vi1 ) denote the 

configuration obtained after the vertices vi1 through viℓ fire. We say that X = 

(vi1 , vi2 , . . . , viℓ ) ∈ V (G)ℓ is a legal firing sequence if X does not contain v0 and 

no vertex goes into deficit along the way, that is for every j, the number of chips on 

vij in configuration C(vi1 ,vi2 ,...,vij−1 ) is greater than or equal to the degree of vij . 

We define the score of X to be x = (x1, . . . , x|V |−1) if vertex vi appears xi times 

in X . 

If Y is another legal firing sequence (also not containing v0), with score given by 

vector y, then we let X \ Y denote the sequence obtained from X by deleting the 

first yi occurrences of vertex vi. (If xi ≤ yi then we delete all occurrences.) Lastly, 

we denote the concatenation of sequence X followed by Y as (X ,Y). 

Proposition. Let C be an initial unstable configuration, and X , Y both be legal 

firing sequences not containing v0. Then (Y ,X \ Y) is also a legal firing sequence 

and has score equal to z where zi = max{xi, yi} for all i ∈ {1, 2, . . . , |V | − 1}. 

We prove this Proposition momentarily. As an application we show that if X 

and Y are both legal firing sequences for an initial configuration C, then there is a 

configuration, CZ , which is reachable from both CX and CY . 

Namely, the concatenations (Y ,X \ Y) and (X ,Y \ X ) are both legal by the 

Lemma, and have the same score. Thus letting Z = (Y ,X \Y), we find CZ satisfies 

the desired hypothesis. 

In particular, if CX and CY are both stable configurations, there are legal firing 

sequences X ′ and Y ′ not containing v0 so that C(X ,X ′ ) = C(Y ,Y ′). However, since the 

only legal firing sequence not containing v0 following a stable configuration is the 

empty sequence, we must have that CX = CY . In particular, we have shown that 
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there is a unique stable configuration reachable from any unstable initial configura

tion C. Further, it is well-defined when one can let vertex v0 fire, i.e. if and only if 

no other vertex can fire. 

Now we must show that there is at most one stable configuration that recurs. 

Let C be a recurrent configuration. That means there exists a nonzero vector x, the 

score of a firing sequence X , such that C = C − L(G)x. Since we know that the 

kernel of L(G) is spanned by the all ones vector, we know that such an x must be 

a positive integral multiple of the all ones vector. However, we can in fact say more 

strongly: 

Lemma. Given stable recurrent C, i.e. C = C − L(G)x where x is the score of 

a legal firing sequence, then x may be the all ones vector. 

Proof. Since C is stable, the firing sequence must start with v0 firing. Assume 

that there is a legal firing sequence (from C(v0)) where one of the vertices appears 

more than once. Without loss of generality, assume that v1 is the first vertex which 

appears twice in the sequence, and call the configuration Ĉ right before v1 fires for 

the second time. Since C was stable, C1 ≤ deg(v1) − 1. When v0 fires, this may 

increase the number of chips on v1 (if v0 is a neighbor of v1), and v1’s neighbors 

may subsequently fire, but they each fire at most once. Since we have assumed 

that v1 has already fired a first time, we have that Ĉ1 = C1 − deg(v1) + d1,v0 + 

vi is a neighbor of v1 which has fired d1,i. However, this sum (including v0 as a possible 

neighbor) is less than or equal to deg(v1), and consequently Ĉ1 ≤ C1 ≤ deg(v1)− 1. 

Thus v1 cannot fire a second time, and we have a contradiction. 

As a consequence, any legal firing sequence contains each vertex at most once. 

Another way of saying this is that vertex v0 must fire a second time before any other 

vertex does. If v0 and all other vertices have fired, we are done since we have the 

all ones vector and we clearly have returned to C. On the other hand, if we obtain 

a stable configuration earlier, once v0 fires a second time, any vertex that has not 

already fired will never be able to catch up to v0. But we should eventually get to 

a multiple of the all ones vector, so we must have been in the first case. 

Note that given stable recurrent configuration C we let v0 fire to obtain C(v0 ) 

and we have shown that the subsequent firing of (vi1 , . . . , vin−1 ), (i1, i2, . . . , in−1) is a 

permutation of {1, 2, . . . , n−1} that exactly undoes the firing of v0. This means that 

C is the first stable configuration reached after reducing. Thus the first recurrent 

stable configuration reached will subsequently recur from then on as the only stable 
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configuration ever reached again. Thus, it is the only critical configuration. 

Proof of Proposition. We now end the proof of the Theorem by including the 

proof of the remaining Proposition, which we prove by induction on the length of 

X \ Y . Without loss of generality, assume that X \ Y starts with v1. Let X denote 

the truncated sequence which ends right before the (y1 + 1)st appearance of v1 in 

X . Clearly X is legal as well, and has score x satisfying 

x1 = y1, xi ≤ yi for 1 < i ≤ n. 

Thus the coordinate 

n 

(CY)1 = C1 − d1y1 + di,1yi ≥ 
i=2 
n 

(CX )1 = C1 − d1x1 + di,1xi 

i=2 

≥ deg(v1) 

since vertex v1 is about to be fired again in sequence X . Thus v1 can be fired again 

after Y as well and so (Y , v1) is legal as well. We now repeat the argument for X 

and (Y , v1) until we have shown the entire sequence (Y ,X \ Y) is legal. 

4 Chip-Firing on Directed Graphs 

For more on chip-firing, including chip-firing on directed graphs, we invite the reader 

to look at the papers “Chip-Firing Games on Directed Graphs” by Anders Bj orner 

and Lásló Lovász (1992) as well as “Chip-Firing and Rotor-Routing on Directed 

Graphs” by Alexander Holroyd, Lionel Levine, Karola Mézáros, Yuval Peres, James 

Propp, and Daivd Wilson (2008). 

Much of the theory that we have developed for undirected graphs G also works 

for digraphs D but not always. In this section, we give a glimpse of some of the 

aspects of chip-firing on digraphs. 

First of all, the notion of sending chips to ones’ neighbors is easily adapted in 

this case. We use the directed Laplacian matrix whose diagonal entries are the 

outdegrees and the off-diagonal entries are the number of directed edges between a 

given pair of vertices. As in the undirected case, we assume our graph is loop-less 

and finite. Recall that we may turn any undirected graph into a digraph by replacing 

each edge with a pair of oppositely directed edges. 



Since L(D) is not necessarily symmetric, it does not easily decompose into a 

product AAT like in the previous section. Note that the definition of the incidence 

matrix also is now problematic since our edges already have orientations. However 

there are two hypotheses for which most of the undirected theory goes through. 

Definition. We say that a digraph has a global sink s if all vertices v ∈ 

V (D) \ {s} have an edge v −→ s incident to it and s contains no outgoing edges. 

Lemma. If digraph D has a global sink, then every chip configuration on D 

stabilizes. 

Proof. Omitted, see Lemma 2.4 of [Holroyd-Levine-Mézáros-Peres-Propp-Wilson]. 

In fact, there are several other results of this flavor where the presence of a global 

sink ensures that the chip-firing process runs similar to the undirected case. The 

other common hypothesis we have already seen in our class. 

Lemma. (Burning algorithm due to Dhar (1990)) If a digraph D is Eu

lerian (i.e. connected and balanced) with a sink vertex v0 then a chip configuration 

C is recurrent if and only if the stabilization C + β = C where 

β(v) = outdedg(v)− indeg(v) ≥ 0. 

Furthermore, if C is recurrent, then each vertex fires exactly once during the stabi

lization of C + β. 

Remark. Here by stabilization we would first fire sink v0 if C + β were already 

stable and stop at the next stable configuration reached. 
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