Course 18.312: Algebraic Combinatorics Lecture Notes # 23-24 Addendum by Gregg Musiker April 6th - 8th, 2009

The following is an outline of the material covered April 6th and 8th in class. This material can be found in Chapter 5 of Stanley's Enumerative Combinatorics Volume 2. Proofs of most of the results are in class notes.

1 Exponential Generating Functions

Definition. Given $f, g : \mathbb{N} \to \mathbb{Z}$, which we think of as counting objects of sizes k in two set \mathcal{F} and \mathcal{G} , respectively, we define a new function $h : \mathbb{N} \to \mathbb{Z}$ by the following:

$$h(\#X) = \sum_{(S,T)} f(\#S)g(\#T)$$

where X is a finite set and (S, T) disjointly partition X, i.e. $S \cap T = \emptyset$ and $S \cup T = X$. Sets S and T are allowed to be empty.

Definition. We define the **exponential generating function** of sequence $\{f(n)\}$ to be

$$E_f(x) := \sum_{n \ge 0} f(n) \frac{x^n}{n!}.$$

Proposition.

$$E_h(x) = E_f(x)E_g(x).$$

The following is Corollary 5.1.6 of Stanley's Enumerative Combinatorics 2.

Theorem. (The Exponential Formula) Given $f : \{1, 2, ...\} \to \mathbb{Z}$, define a new function $h : \mathbb{N} \to \mathbb{Z}$ by h(0) = 1 and

$$h(\#S) = \sum_{k \ge 1} \sum_{B_1, \dots, B_k} f(\#B_1) f(\#B_2) \cdots f(\#B_k)$$

for $\#S \ge 1$. Here, the sum is over partitions of S, i.e. $B_i \cap B_j = \emptyset$ for all $i \ne j$. We assume these blocks B_i are non-empty, and $B_1 \cup B_2 \cup \cdots \cup B_k = S$. Then

$$E_h(x) = \exp(E_f(x)).$$

The following is Corollary 5.1.8 of Stanley's Enumerative Combinatorics 2.

Theorem. (Permutation Version of the Exponential Formula) Given $f : \{1, 2, ...\} \rightarrow \mathbb{Z}$, define a new function $h : \mathbb{N} \rightarrow \mathbb{Z}$ by h(0) = 1 and let n = #S,

$$h(n) = \sum_{\pi \in S_n} f(\#C_1) f(\#C_2) \cdots f(\#C_k)$$

for $\#S \ge 1$. Here, the C_i 's are the cycles, thought of as sets of S, in the disjoint cycle decomposition of π . Then

$$E_h(x) = \exp(\sum_{n \ge 1} f(n) \frac{x^n}{n}).$$

Application: The nubmer of simple graphs on n vertices is $2^{\binom{n}{2}}$ and we let c(n) be the number of connected graphs on n vertices.

$$\exp(\sum_{n \ge 1} c(n) \frac{x^n}{n!}) = \sum_{n \ge 0} 2^{\binom{n}{2}} \frac{x^n}{n!}.$$

2 Tree Enumeration

A tree is an undirected graph with no cycles. A tree is **rooted** if it has a distinguished vertex (called the root).

Let $T_n = \#$ labeled trees on n vertices.

Let $t_n = \#$ labeled rooted trees on n vertices.

A forest is a disjoint union of trees. A rooted forest is a collection of rooted trees, one root for each tree.

Let $f_n = \#$ of rooted labeled forests on n vertices.

Claim: $T_{n+1} = f_n$ and $t_n = nT_n$.

Bijective Proofs: Peel off root, labeled (n + 1) of a rooted tree and left with a rooted forest. A rooted tree is a choice of a labeled tree plus a choice of a vertex to be the root.

A Rooted Forest is a collection of rooted trees, so we can use the exponential formula to count. Let

$$y = E_t(x) = \sum_{n \ge 1} t_n \frac{x^n}{n!} \text{ and } E_f(x) = \sum_{n \ge 0} f_n \frac{x^n}{n!}.$$
$$E_f(x) = \exp(y). \text{ On the other hand, } t_{n+1} = (n+1)f_n, \text{ so}$$
$$xE_f(x) = \sum_{n \ge 0} f_n \frac{x^{n+1}}{n!} = \sum_{n \ge 0} t_{n+1} \frac{x^{n+1}}{(n+1)!} = E_t(x) = y.$$

Thus $y = E_t(x)$ satisfies $xe^y = y$. We can solve this identity in a way that allows us to compute coefficients of y using a technique known as the **Lagrange Inversion** Formula.

But first, we compute t_n 's combinatorially:

Claim. There are $\binom{n}{d_1, d_2, \dots, d_n} = \frac{(n-1)!}{d_1! d_2! \cdots d_n!}$ rooted trees on $\{1, 2, \dots, n\}$ in which vertex *i* has outdegree d_i , where the outdegree of a vertex v_i is the number of its neighbors further away from the root. These neighbors are called **children** and the unique neighbor closer to the root is called a **parent**. A vertex with no children is called a **leaf**. (Notice that $\sum_{i=1}^n d_i = n - 1$.)

We prove this claim using the **Prüfer code**. Start with a rooted labeled tree T.

- 1. Locate the leaf with the smallest label.
- 2. Write down the label of its unique parent. Delete this leaf and its adjoing edges.
- 3. Go to step 1.

Application: The Prüfer code gives bijections between desired set of sequences and rooted trees with specified outdegrees.

Corollary. $t(n) = n^{n-1}$, the number of sequences of length (n-1) on n letters.

Corollary (Cayley's Theorem). $T(n) = n^{n-2}$, the number of (unrooted) labeled trees on n vertices.

Remark. The Catalan numbers count binary trees in several different ways.

3 Statement of Lagrange Inversion

Given a formal power series $f(x) = a_1x + a_2x^2 + a_3x^3 + \ldots$, we say that f(x) has a compositional inverse $f^{\langle -1 \rangle}(x) = g(x) = b_1x + b_2x^2 + b_3x^3 + \ldots$ if f(g(x)) = g(f(x)) = x.

Proposition. f(x) has a compositional inverse iff $a_1 \neq 0$. In this case, the compositional inverse is unique.

Note that

 $a_1(b_1x+b_2x^2+b_3x^3+\dots)+a_2(b_1x+b_2x^2+\dots)^2+a_3(b_1x+\dots)^3+\dots=x+0x^2+0x^3+\dots$

if and only if

$$a_{1}b_{1} = 1$$

$$a_{1}b_{2} + a_{2}b_{1}^{2} = 0$$

$$a_{1}b_{3} + 2a_{2}b_{1}b_{2} + a_{3}b_{1}^{3} = 0$$
...

Theorem (Lagrange Inversion Formula). In particular,

$$[x^n]F^{\langle -1\rangle}(x) = \frac{1}{n}[x^{n-1}]\left(\frac{x}{F(x)}\right)^n$$

where the right-hand-side can be written equivalently as $\frac{1}{n}[x^{-1}]F(x)^{-n}$.

Exercise 1: Let $F(x) = \sum_{k \ge 1} \frac{x^k}{k!}$ and show that $F^{\langle -1 \rangle}(x) = \sum_{k \ge 1} \frac{(-1)^{k+1}}{k} x^k$.

(Hint: You will also recognize these as power series of familiar functions.

Exercise 2: Let $F(x) = xe^{-x}$ and we have $E_t(x) = F^{\langle -1 \rangle}(x)$. Also

$$\frac{1}{n}[x^{n-1}]\left(\frac{x}{xe^{-x}}\right)^n = \frac{1}{n}[x^{n-1}]e^{nx} = \frac{1}{n}\frac{n^{n-1}}{(n-1)!} = \frac{n^{n-1}}{n!}$$

Consequently, we obtain a second proof that $t_n = n^{n-1}$.

MIT OpenCourseWare http://ocw.mit.edu

18.312 Algebraic Combinatorics Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.