Course 18.312: Algebraic Combinatorics

Lecture Notes # 18-19 Addendum by Gregg Musiker

March 18th - 20th, 2009

The following material can be found in a number of sources, including Sections 7.3 - 7.5, 7.7, 7.10 - 7.11, 7.15 - 16 of Stanley's Enumerative Combinatorics Volume 2.

1 Elementary and Homogeneous Symmetric Functions

A polynomial in *n* variables, $P(x_1, x_2, ..., x_n) \in \mathbb{C}[x_1, x_2, ..., x_n]$ is known as a **symmetric polynomial** if for any permutation $\sigma \in S_n$, $P(x_{\sigma(1)}, x_{\sigma(2)}, ..., x_{\sigma(n)}) = P(x_1, x_2, ..., x_n)$.

An important family of symmetric polynomials is the family of **elementary** symmetric functions.

$$e_k = e_k(x_1, x_2, \dots, x_n) := \sum_{1 \le i_1 < i_2 < \dots < i_k \le n} x_{i_1} x_{i_2} \cdots x_{i_k}.$$

Notice that $e_0 = 1$, $e_k(x_1, x_2, ..., x_n) = 0$ if k > n and the number of terms in $e_k(x_1, x_2, ..., x_n)$ is $\binom{n}{k}$. If $\lambda = [\lambda_1, \lambda_2, ..., \lambda_\ell]$ is a partition, $e_\lambda := e_{\lambda_1} \cdot e_{\lambda_2} \cdots e_{\lambda_\ell}$.

(Fundamental Theorem of Symmetric Functions) Any symmetric polynomial with coefficients in \mathbb{C} can be written as a \mathbb{C} -linear combination of the e_{λ} 's. Furthermore, any symmetric polynomial with coefficients in \mathbb{Z} can be written as a \mathbb{Z} -linear combination of the e_{λ} 's.

We will not prove this theorem but will illustrate it for a few important examples of symmetric functions.

Let $E(t) := \sum_{k=0}^{\infty} e_k t^k$. Then $E(t) = \prod_i (1+x_i t)$. In particular, if we are working with symmetric polynomials in n variables, then i ranges over $\{1, 2, \ldots, n\}$ in this

product.

Another important family of symmetric functions is family of **homogeneous** symmetric functions, defined as

$$h_k = h_k(x_1, x_2, \dots, x_n) := \sum_{1 \le i_1 \le i_2 \le \dots \le i_k \le n} x_{i_1} x_{i_2} \cdots x_{i_k}.$$

Similarly we let $h_{\lambda} = h_{\lambda_1} \cdot h_{\lambda_2} \cdots h_{\lambda_{\ell}}$, $h_0 = 1$, $h_1 = e_1$, and the number of terms in $h_k(x_1, x_2, \dots, x_n)$ is $\binom{n}{k}$, the number of k-element multisets of $\{1, 2, \dots, n\}$.

Let $H(t) := \sum_{k=0}^{\infty} h_k t^k$. Then $H(t) = \prod_i \frac{1}{(1-x_i t)}$. As a consequence we get the following result.

Theorem. We have the identity for all $k \ge 1$:

$$\sum_{i=0}^{k} (-1)^{k} e_{i} h_{k-i} = 0.$$

Proof. From the above, we see that H(t)E(-t) = 1 so the convolution

$$\sum_{i=0}^{k} (-1)^{i} e_{i} h_{k-i} = \begin{cases} 1 & \text{if } k = 0\\ 0 & \text{if } k \ge 1 \end{cases}$$

As a corollary, we get that

$$h_k = \sum_{i=1}^k (-1)^{i-1} e_i h_{k-i}.$$

Thus by induction, we get explicit expressions for h_k as a polynomial in terms of e_1 through e_k .

Since these identities are true regardless of the number of variables appearing in the polynomials, these are symmetric *function* identities rather than simply identities of polynomials.

2 Power symmetric functions

We define

$$p_k = p_k(x_1, x_2, \dots, x_n) := x_1^k + x_2^k + \dots + x_n^k,$$

the **power** symmetric functions, with $p_{\lambda} = p_{\lambda_1} \cdot p_{\lambda_2} \cdots p_{\lambda_{\ell}}$

Theorem. These functions satisfy the **Newton-Girard** identities for all $k \ge 1$:

$$ke_{k} = \sum_{i=1}^{k} (-1)^{i-1} e_{k-i} p_{i}$$
$$kh_{k} = \sum_{i=1}^{k} h_{k-i} p_{i}.$$

Proof. We prove the second identity, involving the power symmetric functions and the homogeneous symmetric functions. Let

$$P(t) = \sum_{k=1}^{\infty} p_k t^k.$$

Notice that

$$\frac{d}{dt}\bigg(H(t)\bigg) = H'(t) = \sum_{k=0}^{\infty} kh_k t^{k-1},$$

and the logarithmic derivative

$$\frac{H'(t)}{H(t)} = \frac{d}{dt} \left(\log H(t) \right) = \frac{d}{dt} \left(\log \prod_{i} (1 - x_i t)^{-1} \right)$$
$$= \frac{d}{dt} \left(\sum_{i} -\log(1 - x_i t) \right)$$
$$= \frac{d}{dt} \left(\sum_{i} \sum_{j=1}^{\infty} \frac{(x_i t)^j}{j} \right)$$
$$= \sum_{j=1}^{\infty} \left(\sum_{i} x_i^j t^{j-1} \right)$$
$$= \sum_{k=1}^{\infty} p_k t^{k-1} = \frac{P(t)}{t}.$$

Thus P(t)H(t) = tH'(t) and each coefficient of t^k in the convolution on the LHS, $\sum_{i=1}^k h_{k-i}p_i$, equals the coefficient of t^{k-1} in H'(t), namely kh_k .

The proof of the first identity is analogous. We leave it to the reader.

As above, we can use these identities like these to rewrite p_k 's in terms of e_{λ} 's or h_{λ} 's, respectively, or vice-versa. First we introduce some notation.

For $i \geq 1$, let $m_i = m_i(\lambda)$ copies of the number i in λ . (Note that $m_i = 0$ for $i > |\lambda|$.) $z_{\lambda} = \prod_{i=1}^{\infty} i^{m_i} \cdot (m_i)!$. Let $\epsilon_{\lambda} = (-1)^{m_2 + m_4 + m_6 + \dots}$.

Lemma. If $\lambda \vdash n$ and has ℓ nonzero parts, then $\epsilon_{\lambda} = (-1)^{n-\ell}$. In particular, ϵ_{λ} is the sign of the permutation that contains $m_i(\lambda)$ *i*-cycles (for $i \geq 1$).

Proof. Left to the reader.

Using this notation we obtain the following result.

Theorem.

$$h_{k} = \sum_{\lambda \vdash k} \frac{p_{\lambda}}{z_{\lambda}}$$
$$e_{k} = \sum_{\lambda \vdash k} \epsilon_{\lambda} \frac{p_{\lambda}}{z_{\lambda}}$$

Proof. We saw in the last proof that

$$\frac{d}{dt}\left(\log H(t)\right) = \frac{P(t)}{t}.$$

As a consequence,

$$\sum_{k=0}^{\infty} h_k t^k = \exp\bigg(\sum_{k=1}^{\infty} \frac{p_k}{k} t^k\bigg).$$

The exponential of a series, $\exp(\sum_{k=1}^{\infty} a_k t^k) = \exp(A(t))$ equals the sum $\sum_{i=0}^{\infty} \frac{A(t)^i}{i!}$, which can be rewritten as the double sum

$$\sum_{i=0}^{\infty} \sum_{\substack{\text{unordered composition } r_1 + r_2 + r_3 + \dots + r_i = i \\ \text{each } r_j \text{ is a nonnegative integer}}} \binom{i}{(r_1, r_2, \dots, r_i)} \frac{(a_1 t)^{r_1} (a_2 t^2)^{r_2} \cdots (a_i t^i)^{r_i}}{i!}$$

after expanding each term by the multinomial theorem.

Since the order of the composition does not matter, and only nonzero parts contribute to the summands, we can think of these r_j 's as the number of j's in a partition $\lambda \vdash i$, i.e. each such composition gives rise to a λ so that $r_j = m_j(\lambda)$. We then use the above notation to rephrase this sum as

$$\exp(A(t)) = \sum_{i=0}^{\infty} \sum_{\lambda \vdash i} \binom{i}{m_1, m_2, \dots, m_i} \frac{(a_1^{m_1} a_2^{m_2} \cdots a_i^{m_i}) t^i}{i!}.$$

We leave as an exercise that the coefficient of t^k in $\exp\left(\sum_{k=1}^{\infty} \frac{p_k}{k} t^k\right)$ is $\sum_{\lambda \vdash k} \frac{p_\lambda}{z_\lambda}$.

3 Monomial Symmetric Functions

An even simpler family of symmetric functions is the family of **monomial** symmetric functions.

$$m_{\lambda} = m_{\lambda}(x_1, x_2, \dots, x_n) := \sum_{[\alpha_1, \alpha_2, \dots, \alpha_n] \text{ is a rearrangement of } [\lambda_1, \lambda_2, \dots, \lambda_\ell, 0, 0, \dots, 0]} x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_n^{\alpha_n}$$

if $n > \ell$, the number of nonzero parts in λ , and we set $m_{\lambda}(x_1, x_2, \ldots, x_n)$ to be zero otherwise.

(Note that when we think of m_{λ} as a formal symmetric function, i.e. in an infinite number of variables, this second case never occurs.)

Remark. Note that unlike the e_{λ} 's, h_{λ} 's and p_{λ} 's, $m_{\lambda} \neq m_{\lambda_1} \cdot m_{\lambda_2} \cdots m_{\lambda_n}$.

Observation. $e_n = m_{[1^n]}, p_n = m_{[n]}, \text{ and } h_n = \sum_{\lambda \vdash n} m_{\lambda}.$

4 Schur Functions

We define a fifth family of symmetric functions by using determinants. Let $\Delta(x_1, x_2, \ldots, x_n)$ denote the determinant of the matrix

$$a_{\delta} = \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ x_1 & x_2 & x_3 & \dots & x_n \\ x_1^2 & x_2^2 & x_3^2 & \dots & x_n^2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_1^{n-1} & x_2^{n-1} & x_3^{n-1} & \dots & x_n^{n-1} \end{bmatrix}.$$

Theorem.

$$\Delta(x_1, x_2, \dots, x_n) = \prod_{1 \le i < j \le n} (x_j - x_i).$$

Furthermore, $\Delta(x_1, x_2, \ldots, x_n)$ is the nonzero polynomial with smallest degree and the property that

$$\Delta(x_{\sigma(1)}, x_{\sigma(2)}, \dots, x_{\sigma(n)}) = \operatorname{sgn}(\sigma)\Delta(x_1, x_2, \dots, x_n)$$

for any permutation $\sigma \in S_n$. In particular, if σ is a **transposition** that just switches x_i and x_j , we get $-\Delta(x_1, x_2, \ldots, x_n)$ on the RHS.

Such a polynomial is called an **alternating** polynomial, and it follows from above that all alternating polynomials must be divisible by $\Delta(x_1, x_2, \ldots, x_n)$. We can build other alternating polynomials by taking the determinant of

$$a_{\lambda+\delta} = \begin{bmatrix} x_1^{\lambda_n} & x_2^{\lambda_n} & x_3^{\lambda_n} & \dots & x_n^{\lambda_n} \\ x_1^{\lambda_{n-1}+1} & x_2^{\lambda_{n-1}+1} & x_3^{\lambda_{n-1}+1} & \dots & x_n^{\lambda_{n-1}+1} \\ x_1^{\lambda_{n-2}+2} & x_2^{\lambda_{n-2}+2} & x_3^{\lambda_{n-2}+2} & \dots & x_n^{\lambda_{n-2}+2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_1^{\lambda_1+(n-1)} & x_2^{\lambda_1+(n-1)} & x_3^{\lambda_1+(n-1)} & \dots & x_n^{\lambda_1+(n-1)} \end{bmatrix},$$

for any partition $\lambda = [\lambda_1, \lambda_2, \dots, \lambda_n]$ with at most *n* parts, written in weakly decreasing order.

Consequently, the quotient

$$s_{\lambda} = s_{\lambda}(x_1, x_2, \dots, x_n) = \frac{\det(a_{\lambda+\delta})}{\det(a_{\delta})}$$

is the quotient of two alternating polynomials, and is in fact a symmetric polynomial (function). We call these s_{λ} 's Schur functions.

Remark. Note that like the m_{λ} 's, $s_{\lambda} \neq s_{\lambda_1} \cdot s_{\lambda_2} \cdots s_{\lambda_n}$.

The Schur functions are very important in the theory of representation theory of S_n and GL_n . We will not discuss such connections further in the course, although there are many possible final projects on this topic.

There is a beautiful formula for writing the s_{λ} 's in terms of the h_{μ} 's (equivalently the e_{μ} 's). The following two formulas are known as the **Jacobi-Trudi Identity**.

Theorem. If λ has ℓ nonzero parts, let JT_{ℓ} be the ℓ -by- ℓ matrix whose (i, j)th entry is h_{λ_i-i+j} , where we set $h_0 = 1$ and $h_{-k} = 0$ for k < 0. Then

$$s_{\lambda} = \det JT_{\ell}$$

Recall that λ^T is the conjugate (or transpose) of λ . Let JT_{ℓ}' be the matrix whose (i, j)th entry is $e_{\lambda_i - i + j}$. Then we also obtain

$$s_{\lambda^T} = \det JT_{\ell}'.$$

Example.

$$s_{4,1}(x_1, x_2, x_3) = \det \begin{bmatrix} h_{4-1+1} & h_{4-1+2} & h_{4-1+3} \\ h_{1-2+1} & h_{1-2+2} & h_{1-2+3} \\ h_{0-3+1} & h_{0-3+2} & h_{0-3+3} \end{bmatrix} = \det \begin{bmatrix} h_4 & h_5 & h_6 \\ 1 & h_1 & h_2 \\ 0 & 0 & 1 \end{bmatrix}.$$

Proof. We let $e_j^{(\ell)}$ denote the *j*th elementary symmetry function on the alphabet $\{x_1, x_2, \ldots, x_{\ell-1}, x_{\ell+1}, \ldots, x_n\}.$

$$\left(\sum_{i\geq 0} h_i t^i\right) \left(\sum_{j=0}^{n-1} e_j^{(\ell)} (-t)^j\right) = \prod_{i=1}^n \frac{1}{1-x_i t} \prod_{\substack{m=1\\m\neq\ell}}^n (1-x_m t)$$
$$= \frac{1}{1-x_\ell t} = 1 + x_\ell t + x_\ell^2 t^2 + \dots$$

As a special application, we take the coefficient of t^{α_i} on both sides and obtain

$$\sum_{j=0}^{n-1} h_{\alpha_i-j} e_j^{(\ell)} (-1)^j = \sum_{j=1}^n h_{\alpha_i-n+j} e_{n-j}^{(\ell)} (-1)^{n-j} = x_\ell^{\alpha_i}.$$

This identity implies the matrix equation

$$H_{\alpha}E = A_{\alpha},$$

where we let the entries of A_{α} be $x_j^{\alpha_i}$'s, the entries of H_{α} be h_{α_i-n+j} 's and the entries of E be $(-1)^{n-i}e_{n-i}^{(j)}$'s.

If we let $\alpha = [n - 1, n - 2, ..., 2, 1, 0]$ (resp. $\lambda + [n - 1, n - 2, ..., 2, 1, 0]$), the right-hand-side gives precisely the entries of the matrix appearing in the denominator (resp. numerator) of the Schur function.

It suffices to show that det $E = \det A_{[n-1,n-2,\dots,2,1,0]} = \Delta(x_1, x_2, \dots, x_n)$, and thus we obtain

$$\det H_{\lambda+[n-1,n-2,\dots,2,1,0]} = \frac{\det A_{\lambda+[n-1,n-2,\dots,2,1,0]}}{\det A_{[n-1,n-2,\dots,2,1,0]}}.$$

The formula det $E = \det A_{[n-1,n-2,\dots,2,1,0]}$ follows from the fact that $A_{[n-1,n-2,\dots,2,1,0]} = H_{[n-1,n-2,\dots,2,1,0]}E$ and $H_{[n-1,n-2,\dots,2,1,0]}$ is an upper triangular matrix with ones on the diagonal. We saw det $A_{[n-1,n-2,\dots,2,1,0]} = \Delta(x_1, x_2, \dots, x_n)$ above.

We close these notes with an alternative, more combinatorial definition, of Schur functions.

We begin by generalizing the definition of Standard Young Tableaux (SYT). Recall that a SYT of shape λ , $\lambda \vdash n$, is a filling of a Young diagram of shape λ using exactly the numbers $\{1, 2, ..., n\}$ such that the numbers in each row increase as we proceed to the right, and the numbers in each column increase as we proceed downwards. A Semi-standard Young Tableaux (SSYT) of shape λ using no number smaller than 1 or larger than n is a filling of the Young diagram so that the numbers in each row weakly increase and the numbers in each column strictly decrease.

We define the weight x_T of a SSYT T to be the product $\prod_{i=1}^n x_i^{\#i's \text{ appearing in } T}$.

Theorem.

$$s_{\lambda}(x_1, x_2, \dots, x_n) = \sum_{\text{SSYT } T \text{ of shape } \lambda \text{ using no number outside } 1 \le i \le n} x_T.$$

Proof. Omitted.

The proof of this theorem along with associated results or applications of SSYT is a possible final project.

MIT OpenCourseWare http://ocw.mit.edu

18.312 Algebraic Combinatorics Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.