Course 18.312: Algebraic Combinatorics

Lecture Notes \# 18-19 Addendum by Gregg Musiker
March 18th - 20th, 2009

The following material can be found in a number of sources, including Sections $7.3-7.5,7.7,7.10-7.11,7.15-16$ of Stanley's Enumerative Combinatorics Volume 2.

1 Elementary and Homogeneous Symmetric Functions

A polynomial in n variables, $P\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is known as a symmetric polynomial if for any permutation $\sigma \in S_{n}, P\left(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(n)}\right)=$ $P\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.

An important family of symmetric polynomials is the family of elementary symmetric functions.

$$
e_{k}=e_{k}\left(x_{1}, x_{2}, \ldots, x_{n}\right):=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n} x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}} .
$$

Notice that $e_{0}=1, e_{k}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0$ if $k>n$ and the number of terms in $e_{k}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is $\binom{n}{k}$. If $\lambda=\left[\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right]$ is a partition, $e_{\lambda}:=e_{\lambda_{1}} \cdot e_{\lambda_{2}} \cdots e_{\lambda_{\ell}}$.
(Fundamental Theorem of Symmetric Functions) Any symmetric polynomial with coefficients in \mathbb{C} can be written as a \mathbb{C}-linear combination of the e_{λ} 's. Furthermore, any symmetric polynomial with coefficients in \mathbb{Z} can be written as a \mathbb{Z}-linear combination of the e_{λ} 's.

We will not prove this theorem but will illustrate it for a few important examples of symmetric functions.

Let $E(t):=\sum_{k=0}^{\infty} e_{k} t^{k}$. Then $E(t)=\prod_{i}\left(1+x_{i} t\right)$. In particular, if we are working with symmetric polynomials in n variables, then i ranges over $\{1,2, \ldots, n\}$ in this
product.

Another important family of symmetric functions is family of homogeneous symmetric functions, defined as

$$
h_{k}=h_{k}\left(x_{1}, x_{2}, \ldots, x_{n}\right):=\sum_{1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{k} \leq n} x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}} .
$$

Similarly we let $h_{\lambda}=h_{\lambda_{1}} \cdot h_{\lambda_{2}} \cdots h_{\lambda_{\ell}}, h_{0}=1, h_{1}=e_{1}$, and the number of terms in $h_{k}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is $\left.\binom{n}{k}\right)$, the number of k-element multisets of $\{1,2, \ldots, n\}$.

Let $H(t):=\sum_{k=0}^{\infty} h_{k} t^{k}$. Then $H(t)=\prod_{i} \frac{1}{\left(1-x_{i} t\right)}$. As a consequence we get the following result.

Theorem. We have the identity for all $k \geq 1$:

$$
\sum_{i=0}^{k}(-1)^{k} e_{i} h_{k-i}=0
$$

Proof. From the above, we see that $H(t) E(-t)=1$ so the convolution

$$
\sum_{i=0}^{k}(-1)^{i} e_{i} h_{k-i}= \begin{cases}1 & \text { if } \quad k=0 \\ 0 & \text { if } \quad k \geq 1\end{cases}
$$

As a corollary, we get that

$$
h_{k}=\sum_{i=1}^{k}(-1)^{i-1} e_{i} h_{k-i} .
$$

Thus by induction, we get explicit expressions for h_{k} as a polynomial in terms of e_{1} through e_{k}.

Since these identities are true regardless of the number of variables appearing in the polynomials, these are symmetric function identities rather than simply identities of polynomials.

2 Power symmetric functions

We define

$$
p_{k}=p_{k}\left(x_{1}, x_{2}, \ldots, x_{n}\right):=x_{1}^{k}+x_{2}^{k}+\cdots+x_{n}^{k},
$$

the power symmetric functions, with $p_{\lambda}=p_{\lambda_{1}} \cdot p_{\lambda_{2}} \cdots p_{\lambda_{\ell}}$
Theorem. These functions satisfy the Newton-Girard identities for all $k \geq 1$:

$$
\begin{aligned}
& k e_{k}=\sum_{i=1}^{k}(-1)^{i-1} e_{k-i} p_{i} \\
& k h_{k}=\sum_{i=1}^{k} h_{k-i} p_{i} .
\end{aligned}
$$

Proof. We prove the second identity, involving the power symmetric functions and the homogeneous symmetric functions. Let

$$
P(t)=\sum_{k=1}^{\infty} p_{k} t^{k} .
$$

Notice that

$$
\frac{d}{d t}(H(t))=H^{\prime}(t)=\sum_{k=0}^{\infty} k h_{k} t^{k-1}
$$

and the logarithmic derivative

$$
\begin{aligned}
\frac{H^{\prime}(t)}{H(t)}=\frac{d}{d t}(\log H(t)) & =\frac{d}{d t}\left(\log \prod_{i}\left(1-x_{i} t\right)^{-1}\right) \\
& =\frac{d}{d t}\left(\sum_{i}-\log \left(1-x_{i} t\right)\right) \\
& =\frac{d}{d t}\left(\sum_{i} \sum_{j=1}^{\infty} \frac{\left(x_{i} t\right)^{j}}{j}\right) \\
& =\sum_{j=1}^{\infty}\left(\sum_{i} x_{i}^{j} t^{j-1}\right) \\
& =\sum_{k=1}^{\infty} p_{k} t^{k-1}=\frac{P(t)}{t} .
\end{aligned}
$$

Thus $P(t) H(t)=t H^{\prime}(t)$ and each coefficient of t^{k} in the convolution on the LHS, $\sum_{i=1}^{k} h_{k-i} p_{i}$, eqauls the coefficient of t^{k-1} in $H^{\prime}(t)$, namely $k h_{k}$.

The proof of the first identity is analogous. We leave it to the reader.
As above, we can use these identities like these to rewrite p_{k} 's in terms of e_{λ} 's or h_{λ} 's, respectively, or vice-versa. First we introduce some notation.

For $i \geq 1$, let $m_{i}=m_{i}(\lambda)$ copies of the number i in λ. (Note that $m_{i}=0$ for $i>|\lambda|.) z_{\lambda}=\prod_{i=1}^{\infty} i^{m_{i}} \cdot\left(m_{i}\right)!$. Let $\epsilon_{\lambda}=(-1)^{m_{2}+m_{4}+m_{6}+\cdots}$.

Lemma. If $\lambda \vdash n$ and has ℓ nonzero parts, then $\epsilon_{\lambda}=(-1)^{n-\ell}$. In particular, ϵ_{λ} is the sign of the permutation that contains $m_{i}(\lambda) i$-cycles (for $i \geq 1$).

Proof. Left to the reader.

Using this notation we obtain the following result.
Theorem.

$$
\begin{aligned}
h_{k} & =\sum_{\lambda \vdash k} \frac{p_{\lambda}}{z_{\lambda}} \\
e_{k} & =\sum_{\lambda \vdash k} \epsilon_{\lambda} \frac{p_{\lambda}}{z_{\lambda}}
\end{aligned}
$$

Proof. We saw in the last proof that

$$
\frac{d}{d t}(\log H(t))=\frac{P(t)}{t}
$$

As a consequence,

$$
\sum_{k=0}^{\infty} h_{k} t^{k}=\exp \left(\sum_{k=1}^{\infty} \frac{p_{k}}{k} t^{k}\right) .
$$

The exponential of a series, $\exp \left(\sum_{k=1}^{\infty} a_{k} t^{k}\right)=\exp (A(t))$ equals the sum $\sum_{i=0}^{\infty} \frac{A(t)^{i}}{i!}$, which can be rewritten as the double sum

$$
\sum_{i=0}^{\infty} \sum_{\substack{\text { unordered compostion } \begin{array}{r}
r_{1}+r_{2}+r_{3}+\ldots+r_{i}=i \\
\text { each } r_{j} \text { is a nonnegative integer }
\end{array}}}\binom{i}{r_{1}, r_{2}, \ldots, r_{i}} \frac{\left(a_{1} t\right)^{r_{1}}\left(a_{2} t^{2}\right)^{r_{2} \cdots\left(a_{i} t^{i}\right)^{r_{i}}}}{i!}
$$

after expanding each term by the multinomial theorem.
Since the order of the composition does not matter, and only nonzero parts contribute to the summands, we can think of these r_{j} 's as the number of j 's in a partition $\lambda \vdash i$, i.e. each such composition gives rise to a λ so that $r_{j}=m_{j}(\lambda)$. We then use the above notation to rephrase this sum as

$$
\exp (A(t))=\sum_{i=0}^{\infty} \sum_{\lambda \vdash i}\binom{i}{m_{1}, m_{2}, \ldots, m_{i}} \frac{\left(a_{1}^{m_{1}} a_{2}^{m_{2}} \cdots a_{i}^{m_{i}}\right) t^{i}}{i!} .
$$

We leave as an exercise that the coefficient of t^{k} in $\exp \left(\sum_{k=1}^{\infty} \frac{p_{k}}{k} t^{k}\right)$ is $\sum_{\lambda \vdash k} \frac{p_{\lambda}}{z_{\lambda}}$.

3 Monomial Symmetric Functions

An even simpler family of symmetric functions is the family of monomial symmetric functions.

$$
m_{\lambda}=m_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right):=\sum_{\left[\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right] \text { is a rearrangement of }\left[\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}, 0,0, \ldots, 0\right]} x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{n}^{\alpha_{n}}
$$

if $n>\ell$, the number of nonzero parts in λ, and we set $m_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ to be zero otherwise.
(Note that when we think of m_{λ} as a formal symmetric function, i.e. in an infinite number of variables, this second case never occurs.)

Remark. Note that unlike the e_{λ} 's, h_{λ} 's and p_{λ} 's, $m_{\lambda} \neq m_{\lambda_{1}} \cdot m_{\lambda_{2}} \cdots m_{\lambda_{n}}$.
Observation. $e_{n}=m_{\left[1^{n}\right]}, p_{n}=m_{[n]}$, and $h_{n}=\sum_{\lambda \vdash n} m_{\lambda}$.

4 Schur Functions

We define a fifth family of symmetric functions by using determinants. Let $\Delta\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ denote the determinant of the matrix

$$
a_{\delta}=\left[\begin{array}{ccccc}
1 & 1 & 1 & \ldots & 1 \\
x_{1} & x_{2} & x_{3} & \ldots & x_{n} \\
x_{1}^{2} & x_{2}^{2} & x_{3}^{2} & \ldots & x_{n}^{2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
x_{1}^{n-1} & x_{2}^{n-1} & x_{3}^{n-1} & \ldots & x_{n}^{n-1}
\end{array}\right]
$$

Theorem.

$$
\Delta\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\prod_{1 \leq i<j \leq n}\left(x_{j}-x_{i}\right)
$$

Furthermore, $\Delta\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is the nonzero polynomial with smallest degree and the property that

$$
\Delta\left(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(n)}\right)=\operatorname{sgn}(\sigma) \Delta\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

for any permutation $\sigma \in S_{n}$. In particular, if σ is a transposition that just switches x_{i} and x_{j}, we get $-\Delta\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ on the RHS.

Such a polynomial is called an alternating polynomial, and it follows from above that all alternating polynomials must be divisible by $\Delta\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. We can build other alternating polynomials by taking the determinant of

$$
a_{\lambda+\delta}=\left[\begin{array}{ccccc}
x_{1}^{\lambda_{n}} & x_{2}^{\lambda_{n}} & x_{3}^{\lambda_{n}} & \ldots & x_{n}^{\lambda_{n}} \\
x_{1}^{\lambda_{n-1}+1} & x_{2}^{\lambda_{n-1}+1} & x_{3}^{\lambda_{n-1}+1} & \ldots & x_{n}^{\lambda_{n-1}+1} \\
x_{1}^{\lambda_{n-2}+2} & x_{2}^{\lambda_{n-2}+2} & x_{3}^{\lambda_{n-2}+2} & \ldots & x_{n}^{\lambda_{n-2}+2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
x_{1}^{\lambda_{1}+(n-1)} & x_{2}^{\lambda_{1}+(n-1)} & x_{3}^{\lambda_{1}+(n-1)} & \ldots & x_{n}^{\lambda_{1}+(n-1)}
\end{array}\right]
$$

for any partition $\lambda=\left[\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right]$ with at most n parts, written in weakly decreasing order.

Consequently, the quotient

$$
s_{\lambda}=s_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\frac{\operatorname{det}\left(a_{\lambda+\delta}\right)}{\operatorname{det}\left(a_{\delta}\right)}
$$

is the quotient of two alternating polynomials, and is in fact a symmetric polynomial (function). We call these s_{λ} 's Schur functions.

Remark. Note that like the m_{λ} 's, $s_{\lambda} \neq s_{\lambda_{1}} \cdot s_{\lambda_{2}} \cdots s_{\lambda_{n}}$.
The Schur functions are very important in the theory of representation theory of S_{n} and $G L_{n}$. We will not discuss such connections further in the course, although there are many possible final projects on this topic.

There is a beautiful formula for writing the s_{λ} 's in terms of the h_{μ} 's (equivalently the e_{μ} 's). The following two formulas are known as the Jacobi-Trudi Identity.

Theorem. If λ has ℓ nonzero parts, let $J T_{\ell}$ be the ℓ-by- ℓ matrix whose (i, j) th entry is $h_{\lambda_{i}-i+j}$, where we set $h_{0}=1$ and $h_{-k}=0$ for $k<0$. Then

$$
s_{\lambda}=\operatorname{det} J T_{\ell}
$$

Recall that λ^{T} is the conjugate (or transpose) of λ. Let $J T_{\ell}{ }^{\prime}$ be the matrix whose (i, j) th entry is $e_{\lambda_{i}-i+j}$. Then we also obtain

$$
s_{\lambda^{T}}=\operatorname{det} J T_{\ell}^{\prime}
$$

Example.

$$
s_{4,1}\left(x_{1}, x_{2}, x_{3}\right)=\operatorname{det}\left[\begin{array}{lll}
h_{4-1+1} & h_{4-1+2} & h_{4-1+3} \\
h_{1-2+1} & h_{1-2+2} & h_{1-2+3} \\
h_{0-3+1} & h_{0-3+2} & h_{0-3+3}
\end{array}\right]=\operatorname{det}\left[\begin{array}{ccc}
h_{4} & h_{5} & h_{6} \\
1 & h_{1} & h_{2} \\
0 & 0 & 1
\end{array}\right] .
$$

Proof. We let $e_{j}^{(\ell)}$ denote the j th elementary symmetry function on the alphabet $\left\{x_{1}, x_{2}, \ldots, x_{\ell-1}, x_{\ell+1}, \ldots, x_{n}\right\}$.

$$
\begin{aligned}
\left(\sum_{i \geq 0} h_{i} t^{i}\right)\left(\sum_{j=0}^{n-1} e_{j}^{(\ell)}(-t)^{j}\right) & =\prod_{i=1}^{n} \frac{1}{1-x_{i} t} \prod_{\substack{m=1 \\
m \neq \ell}}^{n}\left(1-x_{m} t\right) \\
& =\frac{1}{1-x_{\ell} t}=1+x_{\ell} t+x_{\ell}^{2} t^{2}+\ldots
\end{aligned}
$$

As a special application, we take the coefficient of $t^{\alpha_{i}}$ on both sides and obtain

$$
\sum_{j=0}^{n-1} h_{\alpha_{i}-j} e_{j}^{(\ell)}(-1)^{j}=\sum_{j=1}^{n} h_{\alpha_{i}-n+j} e_{n-j}^{(\ell)}(-1)^{n-j}=x_{\ell}^{\alpha_{i}} .
$$

This identity implies the matrix equation

$$
H_{\alpha} E=A_{\alpha},
$$

where we let the entries of A_{α} be $x_{j}^{\alpha_{i}}$'s, the entries of H_{α} be $h_{\alpha_{i}-n+j}$'s and the entries of E be $(-1)^{n-i} e_{n-i}^{(j)}$'s.

If we let $\alpha=[n-1, n-2, \ldots, 2,1,0]$ (resp. $\lambda+[n-1, n-2, \ldots, 2,1,0])$, the right-hand-side gives precisely the entries of the matrix appearing in the denominator (resp. numerator) of the Schur function.

It suffices to show that $\operatorname{det} E=\operatorname{det} A_{[n-1, n-2, \ldots, 2,1,0]}=\Delta\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, and thus we obtain

$$
\operatorname{det} H_{\lambda+[n-1, n-2, \ldots, 2,1,0]}=\frac{\operatorname{det} A_{\lambda+[n-1, n-2, \ldots, 2,1,0]}}{\operatorname{det} A_{[n-1, n-2, \ldots, 2,1,0]}}
$$

The formula $\operatorname{det} E=\operatorname{det} A_{[n-1, n-2, \ldots, 2,1,0]}$ follows from the fact that $A_{[n-1, n-2, \ldots, 2,1,0]}=$ $H_{[n-1, n-2, \ldots, 2,1,0]} E$ and $H_{[n-1, n-2, \ldots, 2,1,0]}$ is an upper triangular matrix with ones on the diagonal. We saw $\operatorname{det} A_{[n-1, n-2, \ldots, 2,1,0]}=\Delta\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ above.

We close these notes with an alternative, more combinatorial definition, of Schur functions.

We begin by generalizing the definition of Standard Young Tableaux (SYT). Recall that a SYT of shape $\lambda, \lambda \vdash n$, is a filling of a Young diagram of shape λ using exactly the numbers $\{1,2, \ldots, n\}$ such that the numbers in each row increase as we proceed to the right, and the numbers in each column increase as we proceed downwards.

A Semi-standard Young Tableaux (SSYT) of shape λ using no number smaller than 1 or larger than n is a filling of the Young diagram so that the numbers in each row weakly increase and the numbers in each column strictly decrease.

We define the weight x_{T} of a SSYT T to be the product $\prod_{i=1}^{n} x_{i}^{\# i^{\prime} \text { s appearing in } T}$.

Theorem.

$$
s_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{\text {SSYT } T \text { of shape } \lambda \text { using no number outside } 1 \leq i \leq n} x_{T} .
$$

Proof. Omitted.

The proof of this theorem along with associated results or applications of SSYT is a possible final project.

MIT OpenCourseWare
http://ocw.mit.edu

18.312 Algebraic Combinatorics

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

