Course 18.312: Algebraic Combinatorics

Lecture Notes \# 10 Addendum by Gregg Musiker (Based on Lauren Williams' Notes for Math 192 at Harvard)

February 25th - 27th, 2009

1 Introduction to Partitions

A partition of n is an ordered set of positive integers $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ such that $\sum_{i} \lambda_{i}=n$ and $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{k}$.

Let $P(n)$ denote the set of all partitions of n with $p(n)=|P(n)|$ and $p(0)=1$. For example, the partitions of 4 are $\{[4],[3,1],[2,2],[2,1,1]$, and $[1,1,1,1]\}$, so $p(4)=5$.

We have the following the identity of infinite products:

$$
\begin{aligned}
\prod_{k \geq 1} \frac{1}{1-x^{k}} & =\prod_{k \geq 1}\left(1+x^{k}+x^{2 k}+x^{3 k}+\ldots\right) \\
& =\left(1+x+x^{2}+\ldots\right)\left(1+x^{2}+x^{4}+\ldots\right)\left(1+x^{3}+x^{6}+\ldots\right) \cdots
\end{aligned}
$$

The coefficient of x^{n} in this infinite product is $p(n)$ since the term of $\left(1+x^{k}+\right.$ $\left.x^{2 k}+x^{3 k}+\ldots\right)$ that we pick in each factor determines how many times the number k appears as one of the λ_{i} 's in partition λ. Therefore,

$$
\begin{equation*}
\prod_{k \geq 1} \frac{1}{1-x^{k}}=\sum_{n \geq 0} p(n) x^{n} \tag{1}
\end{equation*}
$$

2 Partitions with Odd or Distinct Parts

As an application, we can also leave out some of the j 's from the index set for this product, thereby obtaining the generating function for the number of partitions not containing such j 's.

For example, if we let $p_{o}(n)$ denote the number of partitions with only odd parts, we get

$$
\begin{equation*}
\prod_{i \geq 1} \frac{1}{1-x^{2 i-1}}=\sum_{n \geq 0} p_{o}(n) x^{n} \tag{2}
\end{equation*}
$$

Similarly, if we truncate the factor $\left(1+x^{k}+x^{2 k}+\ldots\right)$, we can enumerate partitions where k only appears with specified frequencies.

For example, if we let $p_{d}(n)$ denote the number of partitions where all the λ_{i} 's are distinct, then

$$
\begin{equation*}
\prod_{k \geq 1}\left(1+x^{k}\right)=\sum_{n \geq 0} p_{d}(n) x^{n} \tag{3}
\end{equation*}
$$

However, there is an algebraic identity:

$$
\begin{align*}
\prod_{k \geq 1} \frac{1}{1-x^{2 k-1}} & =\prod_{k \geq 1} \frac{\left(1-x^{2 k}\right)}{\left(1-x^{k}\right)} \tag{4}\\
& =\prod_{k \geq 1}\left(1+x^{k}\right)
\end{align*}
$$

Putting together identities (2), (3), and (4), we obtain a Theorem due to Euler, namely the result that $p_{o}(n)=p_{d}(n)$.

3 A Combinatorial Proof of $p_{o}(n)=p_{d}(n)$

We now describe a combinatorial proof of Euler's Theorem. Let $P_{o}(n)$ and $P_{d}(n)$ denote the sets of partitions of n which have odd or distinct parts, respectively. We wish to find a bijection between $P_{o}(n)$ and $P_{d}(n)$.

Idea: Let $\lambda \in P_{o}(n)$ and for all odd k, let n_{k} be the number of times k appears as a part of λ, i.e. $n_{i}=\#\left\{i: \lambda_{i}=k\right\}$. Since λ is a partition of a finite number, $n_{k}=0$ with a finite set of exceptions.

We write each of the n_{i} 's in binary: $n_{i}=2^{m_{i, 1}}+2^{m_{i, 2}}+\cdots+2^{m_{i, r_{i}}}$ where $m_{i, j_{1}}$ is different from $m_{i, j_{2}}$ for each $j_{1} \neq j_{2}$.

We form a new partition λ^{\prime}, defined as the rearrangement of

$$
\left[2^{m_{1,1}} \lambda_{1}, 2^{m_{1,2}} \lambda_{1}, \ldots, 2^{m_{1, r_{1}}} \lambda_{1}, 2^{m_{2,1}} \lambda_{2}, 2^{m_{2,2}} \lambda_{2}, \ldots\right]
$$

We claim that in general λ^{\prime} (a) is a partition of $n=|\lambda|$, and (b) has distinct parts.
(a) If we sum the parts of λ^{\prime}, we can reorder and group the summands so that they correspond to the products $n_{i} \lambda_{i}$ with n_{i} written in binary. Thus the parts of λ^{\prime} sum to the same number as the parts of λ.
(b) Since the λ_{i} 's are all odd, each expression $2^{m_{i, j}} \lambda_{i}$ is the unique way of writing a certain integer after dividing through by the highest power of two.

We have thus shown a mapping from $P_{o}(n)$ into $P_{d}(n)$. To show that this map is a bijection, we construct the inverse map: If $n=\mu_{1}+\mu_{2}+\cdots+\mu_{s}$ is partition, using distinct parts, collect all μ_{i} 's with the same highest power of 2 and write down the odd parts with the appropriate multiplicity.

Example: If $\lambda=\left[7^{9}, 5^{5}, 1^{6}\right]=\left[7^{8+1}, 5^{4+1}, 3^{8+4+2+1}, 1^{4+2}\right]$, then

$$
\begin{aligned}
\lambda^{\prime} & =[8 \cdot 7,1 \cdot 7,4 \cdot 5,1 \cdot 5,8 \cdot 3,4 \cdot 3,2 \cdot 3,1 \cdot 3,4 \cdot 1,2 \cdot 1] \\
& =[56,24,20,12,7,6,5,4,3,2] .
\end{aligned}
$$

Exercise 1: Prove algebraically and combinatorially that the number of partitions with no part divisible by k is equal to the number of partitions with no part appearing k times.

4 Euler's Pentagonal Theorem

We now investigate the infinite product whose reciprocal is the generating function for the number of partitions of size n, namely:

$$
\prod_{k \geq 1}\left(1-x^{k}\right)=1-x-x^{2}+x^{5}+x^{7}-x^{12}-x^{15}+x^{22}+x^{26}-x^{35}-x^{40} \pm \ldots
$$

Observations:

1) All coefficients lie in $\{-1,0,1\}$ and the signs satisfy a simple periodic behavior.
2) The exponent sequence $0,1,2,5,7,12,15,22,26,35,40, \ldots$ can be split into two subsequences, the second of which consists of the pentagonal numbers $1,5,12,22,35, \ldots$. described by the formula $f(j)=\frac{3 j^{2}-j}{2}$.

This sequence has such a name because if one draws a regular pentagon where each side has precisely $j-1$ dots, than the entire pentagon consists of $\frac{3 j^{2}-j}{2}$ dots. This motivates

$$
\text { Euler's Pentagonal Theorem : } \prod_{k \geq 1}\left(1-x^{k}\right)=1+\sum_{j \geq 1}(-1)^{j}\left(x^{\frac{3 j^{2}-j}{2}}+x^{\frac{3 j^{2}+j}{2}}\right) \text {. }
$$

As an application, we can inductively compute $p(n)$. For example,

$$
\begin{aligned}
& p(6)=p(5)+p(4)-p(1)=7+5-1=11, \text { and } \\
& p(7)=p(6)+p(5)-p(2)-p(0)=11+7-2-1=15
\end{aligned}
$$

Exercise 2: Use Euler's Pentagonal Theorem to calculate $p(8), p(9)$, and $p(10)$.

5 Proof of Euler's Theorem

We use the fact that $\frac{1}{\prod_{k \geq 1}\left(1-x^{k}\right)}=\sum_{n \geq 0} p(n) x^{n}$. Thus if we write $\sum_{k \geq 1}\left(1-x^{k}\right)=$ $\sum_{n \geq 0} c(n) x^{n}$, then

$$
\left(\sum_{n \geq 0} c(n) x^{n}\right)\left(\sum_{n \geq 0} p(n) x^{n}\right)=1
$$

Comparing coefficients, we find that the sequence of $c(n)$'s must satisfy $c(0)=1$ and $\sum_{k=0}^{n} c(k) p(n-k)=0$ for all $n \geq 1$. This initial condition and recurrence uniquely determines the sequence of $c(n)$'s.

Consolidating terms, we can write the right-hand-side of Euler's Pentagonal Theorem as $\sum_{j=-\infty}^{\infty}(-1)^{j} x^{\frac{3 j^{2}+j}{2}}$, so it suffices to show that

$$
c(k)= \begin{cases}1 & \text { if } k=\frac{3 j^{2}+j}{2} \text { and } j \text { is even } \\ -1 & \text { if } k=\frac{3 j^{2}+j}{2} \text { and } j \text { is odd } . \\ 0 & \text { otherwise }\end{cases}
$$

If we let $b(j)=\frac{3 j^{2}+j}{2}$ for all $j \in \mathbb{Z}$, then we wish to show for all n that

$$
\sum_{j \text { even and } b(j) \leq n} p(n-b(j))-\sum_{j \text { odd and } b(j) \leq n} p(n-b(j))=0,
$$

which we rewrite as

$$
\sum_{j \text { even and } b(j) \leq n} p(n-b(j))=\sum_{j \text { odd and } b(j) \leq n} p(n-b(j)) .
$$

We thus want a bijection

$$
\phi: \bigcup_{j \text { even }} P(n-b(j)) \rightarrow \bigcup_{j \text { odd }} P(n-b(j))
$$

We present such a bijection as constructed by Bressoud-Zeilberger. This bijection is actually an involution, $\phi(\phi(\lambda))=\lambda$ so ϕ is its own inverse. For $\lambda=$ $\left[\lambda_{1}, \lambda_{2}, \ldots, \lambda_{t}\right] \in P(n-b(j))$ (we remind the reader that $\lambda_{1} \geq \lambda_{i}$ for all i), we set

$$
\phi(\lambda)= \begin{cases}{\left[(t+3 j-1),\left(\lambda_{1}-1\right),\left(\lambda_{2}-1\right) \ldots,\left(\lambda_{t}-1\right)\right]} & \text { if } t+3 j \geq \lambda_{1} \\ {\left[\left(\lambda_{2}+1\right), \ldots,\left(\lambda_{t}+1\right), 1,1, \ldots, 1\right]} & \text { if } t+3 j<\lambda_{1}\end{cases}
$$

where there are $\lambda_{1}-t-3 j-1$ copies of 1 in the second case.

Notice that if $t+3 j \geq \lambda_{1}$, then $\phi(\lambda)$ is a partition of

$$
\begin{aligned}
& t+3 j-1+\left(\lambda_{1}-1\right)+\left(\lambda_{2}-1\right)+\cdots+\left(\lambda_{t}-1\right) \\
= & t+3 j-1+\sum_{i} \lambda_{i}-t=3 j-1+\sum_{i} \lambda_{i} \\
= & n-b(j)+3 j-1=n-\frac{3 j^{2}+j}{2}+(3 j-1) \\
= & n+\frac{-3 j^{2}+5 j-2}{2}=n-b(j-1) .
\end{aligned}
$$

By similar logic, if $t+3 j<\lambda_{1}$, we see that $\phi(\lambda)$ is a partition of $n-b(j+1)$. Thus ϕ maps elements of $P(n-b(j))$ to an element of $P(n-b(j \pm 1))$. By inspection, we see that $\phi^{2}=$ identity, and we conclude that ϕ is the desired bijection.

Example: We calculate $\phi([4,2,1])=[8,3,1]$ for $n=14$ and $j=2$, which is a partition of $12=n-b(1)$.

Exercise 3: Calculate $\phi([3,3,2,1,1,1])$ for $n=37$ and $j=4$.

Solution on next page:

The solution is $[17,2,2,1]$, a partition of $n-b(3)=22$.

MIT OpenCourseWare
http://ocw.mit.edu

18.312 Algebraic Combinatorics

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

