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1 Möbius Function on Posets 

This material closely follows selections from Chapter 3 of Enumerative Combina

torics 1 by Richard Stanley. 

1.1 New Posets from Old 

If P and Q are posets on disjoint sets, then the disjoint union (or direct sum) of 

P and Q is the poset P ⊔ Q (also denoted as P + Q) on the union of sets P and Q 

such that x ≤ y in P ⊔ Q if either (1) x, y ∈ P and x ≤ y in P or (2) x, y ∈ Q and 

x ≤ y in Q. 

The ordinal sum of two posets P ⊕ Q (Q on top of P ) is the poset whose 

elements are the set P ⊔Q with the property that x ≤ y in P ⊕Q if either (1) x ≤ y 

in P ⊔ Q or (2) x ∈ P and y ∈ Q. 

For example, an antichain on n elements is the direct sum of n copies of P1, the 

poset on one element, while a chain on n elements is the ordinal sum of n copies of 

P1. A poset that can be built up by the two operations of direct sum and ordinal 

sum from P1 is known as a series-parallel poset. 

Exercise 1: Find the unique four-element poset which is not a series-parallel 

poset. 

The direct product of posets P and Q is the poset P × Q on the set {(x, y) : 

x ∈ P, y ∈ Q} such that (x, y) ≤ (x ′ , y ′ ) in P × Q if x ≤ x ′ in P and y ≤ y ′ in Q. 

One can draw the Hasse diagram for P ×Q by first drawing the Hasse diagram of P 
∼and then replacing each element x of P with a copy Qx (φx : Qx = Q) of the Hasse 

diagram of Q, and we connect element y of Qx and y ′ of Qx ′ iff φx ′ ◦ φ
−
x 

1(y) = y ′ 
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′ ′ (i.e. y and y correspond to the same element of Q) and x covers x. Observe that 
∼P × Q = Q × P , and if P and Q are graded with rank-generating functions FP (q) 

and FQ(q), then 

FP ×Q(q) = FP (q)FQ(q). 

See Section 4 of “Topics in Algebraic Combinatorics” by Richard Stanley for the 

definition of a graded poset. 

The dual of a poset P is a poset P ∗ on the same set as P , but with order 

relations reversed. That is, x ≤ y in P iff y ≤ x in P ∗ . 

An (induced) subposet Q of P is a subset of P such that for all x, y ∈ Q, x ≤ y 

in Q if and only if x ≤ y in P . 

A (closed) interval [x, y] in a poset P is a special kind of subposet defined as 

the set 

[x, y] = {z ∈ P : x ≤ z ≤ y}. 

For example, the interval [x, x] = {x} and the empty set is not an interval. If every 

interval of P is finite, than P is called locally finite. 

A (lower) order ideal I of a poset is a subposet which is closed under ≤, i.e., 

if x ∈ I and y ≤ x, then y ∈ I. 

1.2 The Möbius Function in Number Theory 

Before defining the Möbius function for more general posets, we discuss a family of 

posets arising from number theory. 

For any positive integer n, we let Dn be the poset of all divisors of n. We say 

that d1 ≤ d2 if d1|d2 (d1 divides d2). For example, if n = 12 then D12 is given by 

the figure below. 
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Figure 1: D12’s Hasse Diagram 
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Notice that the poset Dn is graded with rank equal to the number of prime 

divisors (counting multiplicity) of n. The rank of a given element d in Dn is also 

equal to the number of prime divisors (counting multiplicity) of d. 

To this poset, we define the (number theoretic) Möbius function to be 

 

1 if n is a squarefree positive integer with an even number of distinct prime factors 
 

µ̂(n) = −1 if n is a squarefree positive integer with an odd number of distinct prime factors . 
 



0 if n is not squarefree 

The Möbius function arises in the formula for φ(n), the number of integers in 

{1, 2, . . . , n} which are relatively prime (share no common factor) with n: 

∑ n 
φ(n) = µ̂(d) . (1) 

d 
d|n 

For example, 

φ(12) = #{1, 5, 7, 11} 

= µ̂(1)(12) + µ̂(2)(6) + µ̂(3)(4) + µ̂(4)(3) + µ̂(6)(2) + µ̂(12)(1) 

= 12 − 6 − 4 + 0 + 2 + 0 

= 4. 

We will discuss how to define Möbius functions for other posets, and techniques 

for calculating this function. Applications will include the Möbius inversion formula 

which can be used to demonstrate that formula (1) is equivalent to 

n = φ(d), (2) 
d|n 

as well as the principle of inclusion-exclusion. 

1.3 Möbius function of a poset 

We define a map 

µ : P × P → Z 

by induction. 

µ(x, x) = 1, for all x ∈ P 

µ(x, y) = − µ(x, z), for all x < y in P. 

x≤z<y 



∑ 

∑ 

An alternative way of expressing this definition is that µ(x, y) is the unique func

tion such that µ(u, u) = 1 and sums to zero on larger intervals (i.e. v∈[u,w] µ(u, v) = 

0 for all u < v in P ). This can be abbreviated as 

µ(u, v) = δu,w. 

v∈[u,w] 

Example 1/Exercise 2: Show that for the poset P = Dn, µ(1, d) = µ̂(d) for 

all d dividing n. 

Example 2: We calculate µ(∅, S) for subset S, an element of poset Bn. We 

begin with B3, starting with µ(∅, ∅) = 1. We use this to calculate µ(∅, {i1}) = −1 

and then use diamond shape intervals (isomorphic to B2) to show µ(∅, {i1, i2}) = 1. 

(Here i1, i2 ∈ {1, 2, 3}.) Finally, B3 itself is an interval, and since the sum of all 

values of the Möbius function must sum to zero, the value µ(∅, {1, 2, 3}) = −1. 

Exercise 3: Generalize this argument to Bn and show that for all n ≥ k ≥ 1, 

µ(∅, {i1, i2, . . . , ik}) = (−1)k in poset Bn. 

Proposition (Möbius inversion formula): Let P be a finite poset. (In fact 

this Proposition holds in more generality but we will not need this.) Let f, g : P → 

C. Then 

g(x) = 
∑ 

f(y), for all x ∈ P, 

y≥x 

if and only if 

f(x) = 
∑ 

g(y)µ(x, y), for all x ∈ P. 
y≥x 

Application: The Principle of Inclusion-Exclusion 

Say that we have four sets A, B, C, D, not necessarily disjoint, and we wish 

to count the number of elements in the union A ∪ B ∪ C ∪ D. If we compute 

|A|+ |B|+ |C|+ |D|, any element in the intersection of two of these sets is double-

counted. However, if we compute 

|A|+ |B|+ |C|+ |D| − |A∩B| − |A∩C| − |A∩D| − |B ∩C| − |B ∩D| − |C ∩D|, 

then any element in the intersection of three of these sets is now undercounted. (If 

x ∈ A ∩ B ∩ C then x is counted three times in |A| + |B| + |C| and removed three 
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times by −|A∩B| − |A∩C| − |B ∩C|.) Thus we must add in the sum of the triple 

intersections, and lastly we subtract the size of the full intersection |A∩B∩C ∩D|. 

In general, we have the formula 

∣ Ai 
∣ = (−1)|S|∣ Ai 

∣. 

i∈[n] S⊂[n] i∈S 

Exercise 4 Show that this formula is an application of Möbius inversion applied 

to the boolean poset Bn. 
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