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February 4th - 6th, 2009 

1 Recurrence Relations and Generating Functions 

Given an infinite sequence of numbers, a generating function is a compact way of 

expressing this data. We begin with the notion of ordinary generating functions. 

To illustrate this definition, we start with the example of the Fibonacci numbers. 

{Fn}
∞ 
n=0 = {F0, F1, F2, F3, . . .} 

defined by F0 = 1, F1 = 1, and Fn = Fn−1 + Fn−2 for n ≥ 2. 

1, 1, 2, 3, 5, 8, 13, 21, 34, . . . 

We define 

F (X) := F0 + F1x + F2x 2 + F3x 3 + F4x 4 + . . . 

= 1 + x + 2x 2 + 3x 3 + 5x 4 + 8x 5 + . . . . 

In other words, F (X) is the formal power series 
� 

k

∞ 

=0 Fkx
k . 

Remark. This is called a “formal” power series because we will consider x to 

be an indeterminate variable rather than a specific real number. 

In general, given a sequence of numbers {ai}
∞
i=0 = {a0, a1, a2, a3, . . .}, the associ

ated formal power series is 

∞

A(X) := akx k = a0 + a1x + a2x 2 + a3x 3 + . . . . 
k=0 

We will shortly write down F (X) in a compact form, but we begin with an easier 

example that you have already seen. 
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Recall that n = n! . For example, 
k k!(n−k)! 

� �88 
= {1, 8, 28, 56, 70, 56, 28, 8, 1}. 

k k=0 

In fact if k > 8, 
k 
8 (e.g. 

9
8 ) equals zero. Thus we can consider the entire infinite 

sequence as 

� 8 �∞ 

= {1, 8, 28, 56, 70, 56, 28, 8, 1, 0, 0, 0, . . .},
k k=0 

and then the associated formal power series 

1 + 8x + 28x 2 + 56x 3 + 70x 4 + 56x 5 + 28x 6 + 8x 7 + x 8 + 0x 9 + 0x 10 + . . . 

can be written compactly as (1 + x)8 . 
� � 

∞ 

Generalizing this to any positive integer n, n

k has associated power series 
� � 

k=0 

(1 + x)n, since (1 + x)n = k

n 
=0 

n

k xk by the Binomial Theorem. 

This illustrates that from a formal power series, we can recover a sequence of 

numbers. We call these numbers the coefficients of the formal power series. For 

example, we say that n

k is the coefficient of xk in (1 + x)n . This is sometimes 

written as (1 + x)n 
�

� 

= n

k or [xk](1 + x)n = n

k . 
kx

1.1 More complicated formal power series 

We now want to write a similar expression for F (X) = 
� ∞ 

k=0 Fkx
k, where Fk = 

Fk−1 + Fk−2 for k ≥ 2 and F0 = F1 = 1. 

Notice that 
�

∞ ∞ ∞

akx k ± bkx k = (ak ± bk)x k . 
k=0 k=0 k=0 

As a consequence, Fk = Fk−1 + Fk−2 for k ≥ 2 implies 

∞

F (X) = 1 + F1x + Fkx k


k=2

∞

= 1 + F1x + (Fk−1 + Fk−2)x k 

k=2 

�

∞ ∞

= 1 + F1x + Fk−1x k + Fk−2x k 

k=2 k=2 

= 1 + F1x + xF (X) − F0x + x 2F (X). 



� � 

Thus 

F (X)(1 − x − x 2) = 1 + (F1 − F0)x = 1 + 0x 

and we obtain the rational expression 

1 
F (X) = . 

1 − x − x2 

If we look at the Taylor series for this rational function, we indeed obtain coef

ficients that are the Fibonacci numbers. Generating Functions are also helpful for 

obtaining closed formulas or asymptotic formulas. 

If we use partial fraction decomposition, we see that 

A B 
F (X) = + . 

1 − λ1x 1 − λ2x 

We know that (1 − λ1x)(1 − λ2x) = 1 − x − x2 so 

λ1λ2 = −1 and 

−λ1 − λ2 = −1 

Thus {λ1, λ2} = {1+
2 

√
5 , 1− 

2 

√
5 }. 

Exercise 1: Solve for A and B and use this to obtain a closed form expression 

for Fk. 

Notice that as a consequence we can compute that {Fk+1/Fk} = {1/1, 2/1, 3/2, 5/3, 8/5, 13/8, . . .} 

converges to 1+
2 

√
5 since 

� 

1− 

2 

√
5 
�k 

→ 0 as k → ∞, so 

Aλk+1 + Bλk+1 Aλk+1 
1 2 1 → = λ1. 

Aλk 
1 + Bλk 

2 Aλk 
1 

1.2	 A Combinatorial Interpretation of the Fibonacci Num

bers 

Given a sequence of integers S = {s0, s1, s2, . . .}, a combinatorial interpretation 

of S is a family F of objects (of various sizes) such that the number of objects in F 

of size k is exactly counted by sk. 

For example, a combinatorial interpretation of n

k is as the number of subsets 

of an {1, 2, . . . , n} of size k. 

A domino tiling of a rectangular region R is a covering of R by horizontal 

(1-by-2) domino tiles and vertical (2-by-1) domino tiles such that every square of R 

is covered by exactly one domino. 



� 

For example, if we let R be a 2-by-2 grid, then there are two possible domino 

tilings. Either both tiles are vertical or both are horizontal. If we let R be a 2-by-3 

grid, then there are three possible domino tilings, and a 2-by-4 grid would have five 

such domino tilings. 

Proposition. The number of domino tilings of a 2-by-n grid is counted by the 

nth Fibonacci number, Fn for n ≥ 1. 

Proof. Let DTn denote the number of domino tilings of the 2-by-n grid. We 

first check the initial conditions. There is one way to tile the 2-by-1 grid, and there 

are two ways to tile the 2-by-2 grid. Thus DT1 = 1 = F1 and DT2 = 2 = F2. (Recall 

that F0 = 1, but we do not use this quantity in this combinatorial interpretation.) 

Domino tilings of the 2-by-n grid either look like a domino tiling of the 2-by

(n − 1) grid with a vertical tile tacked onto the end, or a domino tiling of the 

2-by-(n − 2) grid with two horizontal tiles tacked onto the end. Consequently, 

DTn = DTn−1 + DTn−2, the same recurrence as the Fn’s. 

Exercise 2: Show that this combinatorial interpretation can be rephrased as 

the statement 

Fn = The number of subsets S of {a1, a2, . . . , an−1} 

such that ai and ai+1 are not both contained in S. 

1.3 Convolution Product Formula 

In addition to adding formal power series together, we can also multiply them. If 

A(X) = 
� 

k

∞ 

=0 akx
k and B(X) = 

� 

k

∞ 

=0 bkx
k, where ak (resp. bk) counts the number 

of objects of type A (resp. B) and size k, then 

∞

A(X)B(X) = C(X) = cnx n 

n=0 

where cn = 
�n akbn−k, and has a combinatorial interpretation as the number of k=0 

objects of size n formed by taking an object of type A and concatenating it with an 

object of type B. 
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1.4	 Connection between Linear Recurrences and Rational 
Generating Functions 

The behavior we saw of the Fibonacci numbers and its generating function is an 

example of a more general theorem. 

Theorem. (Theorem 4.1.1 of Enumerative Combinatorics 1 by Richard 

Stanley) Let α1, α2, . . . , αd be a fixed sequence of complex numbers, d ≥ 1, and 

αd 6 0. The following conditions on a function f : N → C are equivalent: = 

i) The generating function F (X) equals 

∞
P (x)

f(n)x n = 
Q(x)

n=0 

where Q(x) = 1 + α1x + α2x
2 + . . . + αdx

d and P (x) is a polynomial of degree < d. 

ii) For all n ≥ 0, f(n) satisfies the linear recurrence relation 

f(n + d) + α1f(n + d − 1) + α2f(n + d − 2) + . . . + αdf(n) = 0. 

iii) For all n ≥ 0, 
k 

f(n) = Pi(n)γi
n 

i=1 

where 
k 

1 + α1x + α2x 2 + . . . + αdx d = (1 − γix)ei 

i=1 

with the γi’s distinct and each Pi(n) is a univariate polynomial (in n) of degree less 

than ei. 

Defintion. A generating function of the form P (x) is a called a rational gen-
Q(x) 

erating function. 
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