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1 Partially Ordered Sets II: Dilworth’s Theorem 

Definition. An anitchain A of a poset P is a subset of elements of P such that 

for all x, y ∈ A, x 6≤ y and y 6≤ x. 

We denote the levels of a graded poset P as Pi where Pi = {x ∈ P : rank(x) = i}. 

Remark. Observe that each Pi is an antichain, thus we have the inequality 

max{|A| : A is an antichain of P } ≥ {|Pi| : 0 ≤ i ≤ rank(P )}. 

We say that the poset P has the Sperner Property if this inequality is acutally an 

equality. A combinatorial condition to check if P has the Sperner property is dis

cussed in Section 4 of Richard Stanley’s notes “Topics in Algebraic Combinatorics”. 

Definition. A chain cover of a poset P is a collection of chains whose union is P . 

(Robert) Dilworth’s Theorem 1950. In any finite poset, the minimum size of 

a chain cover equals the maximum size of an antichain. 

Related Proposition. In any finite poset, the minimum size of an antichain cover 

equals the maximum size of a chain. 

Proof. If C is a chain and A is an antichain cover, then no antichain in A can 

contain more than one element of C, i.e. A = {A1, A2, . . . , Ak} and |Ai ∩C| ≤ 1, so 

|A| ≥ |C| = the maximum size of a chain. 

On the other hand, we can define the following antichain cover to show that equality 

is actually achieved: 

Ai = {x ∈ P s.t. the longest chain with maximal element x has length i}. 
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These Ai’s are like the levels Pi however we do not need to assume that P is graded. 

Consequently, |A| is the size of the longest chain, by construction. 

Proof of Dilworth’s Theorem. Turning to the other situation, notice that if we 

pick a chain cover C = {C1, C2, . . . , Ck} where these chains are pairwise disjoint, 

then for any antichain A, we have |A ∩ Ci| ≤ 1, and thus |C| ≥ |A|. Thus the 

maximum size of a chain cover is greater than or equal to the maximum sixe of an 

antichain. However, unlike the related proposition, this time the equality is not as 

easy to see. We follow an inductive proof based on a proof of Fred Galvin (1999). 

Firstly, Dilworth’s theorem is trivial if P is empty, so we may assume that P contains 

at least one element and we therefore let a denote a maximal element of P . By 

induction, we have that Dilworth’s theorem holds for P ′ = P \ {a}, thus there 

exist k disjoint chains C1, . . . , Ck and at least one antichain A0 of size k such that 

A0 ∩ Ci 6 ∅ for i = 1, 2, . . . , k. (If there were to exist a Ci such that A0 ∩ Ci = ∅,= 

then we would have |A0| < |C|, going against our assumption that |A0| = k = |C|.) 

We then use A0’s existence to build another antichain: let xi be the maximal element 

in Ci that belongs to an antichain of length k in P ′ . (Note that if A0 was the only 

antichain of size k then {x1, . . . , xk} would be A0, but otherwise A := {x1, . . . , xk} 

could be a different set.) 

Claim. This set that we just built, A, is an antichain. 

Proof. If xj ≥ xi, then the maximal element of Ci belonging to an antichain 

of length k would be comparable to the maximal element of Cj belonging to an 

antichain of length k. However, then the set A ′ which contains xj and is an antichain 

of length k would satisfy A ′ ∩ Ci 6= ∅ so there would exist y ∈ A ′ ∩ Ci. But then, y 

would be in an antichain of length k and xi ≥ y by xi’s maximality, and we get a 

contradiction since xj and y were supposed to both be part of the antichain A ′ . 

We finish the proof of Dilworth’s Theorem by reducing to two cases: (1) If P contains 

a chain cover of size (k + 1) (larger is impossible), then by the maximality of a, we 

must have that {a} is a chain. Otherwise, P \{a} would also contain a chain cover of 

size (k +1) and we would have a contradiction. In this case, {a}∪A is an antichain 

of size (k + 1). 



(2) On the other hand, if {a} ∪ Ci is a chain of P , then a ≥ xi where xi ∈ A was 

defined to be the maximal element of chain Ci (in P \{a}) contained in an antichain 

of size k. We let C ′ = {a} ∪ {y ∈ Ci : y ≤ xi}. The poset P \ C ′ cannot contain an 

antichain of size k, only one of size (k − 1). Therefore by induction and Dilworth’s 

Theorem, P \C ′ can be covered by (k − 1), but not k, disjoint chains. Therefore, in 

this case, P ’s largest antichain is of size k and largest chain cover is also of size k. 
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