Course 18.312: Algebraic Combinatorics

Lecture Notes \# 15 Addendum by Gregg Musiker

March 9th, 2009

The material for this lecture can be found in several sources, for example see Section 4.1 of William Fulton's book "Young Tableaux".

1 Proof of Schensted's Theorem

Theorem (Schensted). Let π be a permutation of $\{1,2, \ldots, n\}$ written in one-line notation. Let P and Q be the Standard Young Tableaux (SYT) in the image of the (Robinson-Schensted-Knuth) RSK algorithm, i.e. $\operatorname{RSK}(\pi)=(P, Q)$, with shapes $\operatorname{sh}(P)=\operatorname{sh}(Q)=\lambda$. Then the length of the longest increasing subsequence in π equals the length of the first row of λ and the length of the longest decreasing subsequence in π equals the length of the first column of λ.

Before proving this theorem, we start with a few Lemmas.
Lemma 1: Let P_{k-1} be the NYT constructed by inserting $\pi(1), \pi(2), \ldots, \pi(k-1)$. (Note that we do not have a fully Standard Young Tableau because we have only done partial insertion. Instead we have a "Near" Young Tableau.) Assume that the entry $\pi(k)$ about to be inserted will go into the j th column of tableau P_{k}. Then, the longest increasing subsequence of π ending with $\pi(k)$ has length j.

Proof. (By induction on k) The claim is clear for the case $k=1$. Assume row 1 of P_{k-1} has a y in column $(j-1)$ and a z in column j. Then if $\pi(k)$ is inserted into column j, this implies the inequalities $y<\pi(k)<z$. Additionally, $y=\pi(r)$ for some $r \leq k-1$ and when $\pi(r)$ is inserted, it was inserted into column $(j-1)$. This implies that there is an increasing subsequence of length $(j-1)$ in the set $\{\pi(1), \ldots, \pi(r)\}$ ending with $\pi(r)$. Furthermore, $\pi(r)<\pi(k)$, so there exists an increasing subsequence of length j ending with $\pi(k)$.

Now we need to show that there is no longer subsequence ending with $\pi(k)$. If there were, that would involve

$$
\pi\left(i_{1}\right)<\cdots<\pi\left(i_{p}\right)<\pi(k)
$$

where $i_{p}<k$. Assume that the index p is chosen so that there are no elements between $\pi\left(i_{p}\right)$ and $\pi(k)$. Thus $\pi(1), \ldots, \pi\left(i_{p}\right)$ would contain a subsequence of length greater than or equal to j. By induction, this would also mean that $P_{i_{p}}$ would be built by inserting element $\pi\left(i_{p}\right)$ to the right of the $(j-1)$ st column in the first row. Since no $\pi(i)$, for $i_{p}<i<k$ satisfies $\pi(i)>\pi\left(i_{p}\right)$, it follows that P_{k-1} contains $\pi\left(i_{p}\right)$ in the j th column or further to the right. However, then $\pi\left(i_{p}\right)=z$ or to its right, and either way we would obtain $\pi(k)<\pi\left(i_{p}\right)$ and a contradiction.

Corollary. The longest increasing subsequence in π is the length of the first row in $P(\pi)$, which equals λ_{1}.

Let $\pi^{r e v}$ denote the reverse of π. For example, if $\pi=51423$, then $\pi^{r e v}=32415$.
Proposition (Schensted). If $P(\pi)=P$ then $P\left(\pi^{r e v}\right)=P^{T}$, the conjugate SYT.
Sketch of Proof. The proof works by using column insertion instead of row insertion. This is sometimes referred to as Dual RSK. In particular, we insert blocks into the first column as low as possible and then bump elements to columns to the right. If one applies row insertion and column insertion to the same permutation π, and then compares the outputs, then one sees that step-by-step one gets tableaux that are transposes of one another. The Key Lemma is that for any P_{k} and $x, y \notin P_{k}$ (i.e. x and y come later in the permutation π), then

$$
c_{y} r_{x}\left(P_{k}\right)=r_{x} c_{y}\left(P_{k}\right)
$$

Here c_{y} denotes the column insertion of element y and r_{x} denotes the row insertion of element x. The proof of the Key Lemma can be found in "Young Tableaux" and is omitted.

Corollary 1. If $\operatorname{RSK}(\pi)=(P, Q)$, then $\operatorname{RSK}\left(\pi^{r e v}\right)=\left(P^{T}, Q^{T}\right)$.
Proof. If $\operatorname{RSK}(\pi)=(P, Q)$ then $P=r_{\pi_{k}} \circ r_{\pi_{k-1}} \circ \cdots \circ r_{\pi_{2}} \circ r_{\pi_{1}}(\emptyset)$, acting by row
insertion on the left. Consequently,

$$
\begin{aligned}
P^{\text {rev }} & =r_{\pi_{1}} \circ r_{\pi_{2}} \circ \cdots \circ r_{\pi_{k-1}} \circ r_{\pi_{k}}(\emptyset) \\
& =r_{\pi_{1}} \circ r_{\pi_{2}} \circ \cdots \circ r_{\pi_{k-1}} \circ c_{\pi_{k}}(\emptyset) .
\end{aligned}
$$

We rearrange these last two entries by the Key Lemma to obtain

$$
\begin{aligned}
P^{\text {rev }} & =r_{\pi_{1}} \circ r_{\pi_{2}} \circ \cdots \circ r_{\pi_{k-2}} \circ c_{\pi_{k}} \circ r_{\pi_{k-1}}(\emptyset) \\
& =c_{\pi_{k}} \circ r_{\pi_{1}} \circ r_{\pi_{2}} \circ \cdots \circ r_{\pi_{k-2}} \circ r_{\pi_{k-1}}(\emptyset),
\end{aligned}
$$

and we can also change $r_{\pi_{k-1}}$ into a $c_{\pi_{k-1}}$ by the same logic as above. Proceeding iteratively and moving the operator $c_{\pi_{i}}$ leftwards, we obtain

$$
\begin{aligned}
P^{\text {rev }} & =c_{\pi_{k}} \circ c_{\pi_{k-1}} \circ \cdots \circ c_{\pi_{2}} \circ c_{\pi_{1}}(\emptyset) \\
& =P^{T} .
\end{aligned}
$$

Since this result is true for partial tableaux, we obtain that $Q^{\text {rev }}=Q^{T}$ for the recording tableaux as well.

Corollary 2. The length of the longest decreasing subsequence equals the length of the longest column.

This completes the proof of Schensted's Theorem, as well as the fact that $R S K\left(\pi^{r e v}\right)=$ Dual $\operatorname{RSK}(\pi)$.

Symmetry Theorem (Schutzenberger). If $\operatorname{RSK}(\pi)=(P, Q)$ then $\operatorname{RSK}\left(\pi^{-1}\right)=$ (Q, P).

Proof Omitted.

MIT OpenCourseWare
http://ocw.mit.edu

18.312 Algebraic Combinatorics

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

