Given two sets, \mathcal{A} and \mathcal{B}, the Cartesian product $\mathcal{A} \times \mathcal{B}$ is defined as the set of pairs (a, b) with $a \in \mathcal{A}$ and $b \in \mathcal{B}$. The size of a pair (a, b) is defined to be the size of a plus the size of b.
Theorem 1. Let \mathcal{A} and \mathcal{B} be classes of objects and let $A(x)$ and $B(x)$ be their generating functions. Then the class $\mathcal{C}=\mathcal{A} \times \mathcal{B}$ has generating function $C(x)=A(x) B(x)$.

Proof. Let $A(x)=\sum_{j \geq 0} a_{j} x^{j}, B(x)=\sum_{k \geq 0} b_{k} x^{k}$, and $C(x)=\sum_{n \geq 0} c_{n} x^{n}$. To show that $C(x)$ and $A(x) B(x)$ are equal, we show that the coefficients of their series expansions are equal.

An ordered pair (a, b) of size n in $\mathcal{C}=\mathcal{A} \times \mathcal{B}$ can be obtained by choosing an object $a \in \mathcal{A}$ of size $i \leq n$ (a_{i} choices) and an object $b \in \mathcal{B}$ of size $n-i$ (b_{n-i} choices). So

$$
\begin{equation*}
c_{n}=\sum_{i=0}^{n} a_{i} b_{n-i} \tag{1}
\end{equation*}
$$

is the total number of ways to obtain such an ordered pair.
But the coefficients of the series expansion of $A(x) B(x)$ turn out to be the c_{n} from (1). Consider

$$
A(x) B(x)=\left(\sum_{j \geq 0} a_{j} x^{j}\right) \times\left(\sum_{k \geq 0} b_{k} x^{k}\right) .
$$

In order to get the coefficient for x^{n} in this product, we must multiply each monomial $a_{i} x^{i}$ for $i \leq n$ from the first sum with the corresponding monomial $b_{n-i} x^{n-i}$ from the second sum. Thus we have

$$
A(x) B(x)=\sum_{n \geq 0}\left(\sum_{i=0}^{n} a_{i} b_{n-i}\right) x^{n}=C(x) .
$$

We have seen that $A(x) B(x)=C(x)$ because the coefficients of their series expansions are equal.

Theorem 2. Let \mathcal{A} and \mathcal{B} be classes of objects and let $A(x)$ and $B(x)$ be their generating functions. Then the class $\mathcal{C}=\mathcal{A} \times \mathcal{B}$ has generating function $C(x)=A(x) B(x)$.

Proof. To show that $C(x)$ and $A(x) B(x)$ are equal, we show that the coefficients of their series expansions are equal.

First let $C(x)=\sum_{n \geq 0} c_{n} x^{n}$. Because $\mathcal{C}=\mathcal{A} \times \mathcal{B}$, the coefficient c_{n} is the total number of ways to obtain an ordered pair $(a, b) \in C$ of size n. Each pair is obtained by choosing an object $a \in \mathcal{A}$ of size $i \leq n$ (a_{i} choices) and an object $b \in \mathcal{B}$ of size $n-i\left(b_{n-i}\right.$ choices). Thus the total ways to obtain such a pair is

$$
\begin{equation*}
c_{n}=\sum_{i=0}^{n} a_{i} b_{n-i} \tag{2}
\end{equation*}
$$

But these c_{n} turn out to also be the coefficients of the series expansion of $A(x) B(x)$. If we let $A(x)=\sum_{j \geq 0} a_{j} x^{j}$ and $B(x)=\sum_{k \geq 0} b_{k} x^{k}$, then

$$
A(x) B(x)=\left(\sum_{j \geq 0} a_{j} x^{j}\right) \times\left(\sum_{k \geq 0} b_{k} x^{k}\right)
$$

In order to get the coefficient for x^{n} in this product, we must multiply each monomial $a_{i} x^{i}$ for $i \leq n$ from the first sum with the corresponding monomial $b_{n-i} x^{n-i}$ from the second sum. Thus we have

$$
A(x) B(x)=\sum_{n \geq 0}\left(\sum_{i=0}^{n} a_{i} b_{n-i}\right) x^{n}
$$

Because the coefficients of this series expansion are just the c_{n} from (2), we have that $A(x) B(x)=\sum_{n \geq 0} c_{n} x^{n}=C(x)$.

MIT OpenCourseWare
http://ocw.mit.edu

18.310 Principles of Discrete Applied Mathematics

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

