Given two sets, \mathcal{A} and \mathcal{B} , the *Cartesian product* $\mathcal{A} \times \mathcal{B}$ is defined as the set of pairs (a, b) with $a \in \mathcal{A}$ and $b \in \mathcal{B}$. The *size* of a pair (a, b) is defined to be the size of a plus the size of b.

Theorem 1. Let \mathcal{A} and \mathcal{B} be classes of objects and let A(x) and B(x) be their generating functions. Then the class $\mathcal{C} = \mathcal{A} \times \mathcal{B}$ has generating function C(x) = A(x)B(x).

Proof. Let $A(x) = \sum_{j\geq 0} a_j x^j$, $B(x) = \sum_{k\geq 0} b_k x^k$, and $C(x) = \sum_{n\geq 0} c_n x^n$. To show that C(x) and A(x)B(x) are equal, we show that the coefficients of their series expansions are equal.

An ordered pair (a, b) of size n in $\mathcal{C} = \mathcal{A} \times \mathcal{B}$ can be obtained by choosing an object $a \in \mathcal{A}$ of size $i \leq n$ (a_i choices) and an object $b \in \mathcal{B}$ of size n - i(b_{n-i} choices). So

$$c_n = \sum_{i=0}^n a_i b_{n-i} \tag{1}$$

is the total number of ways to obtain such an ordered pair.

But the coefficients of the series expansion of A(x)B(x) turn out to be the c_n from (1). Consider

$$A(x)B(x) = \left(\sum_{j\geq 0} a_j x^j\right) \times \left(\sum_{k\geq 0} b_k x^k\right).$$

In order to get the coefficient for x^n in this product, we must multiply each monomial $a_i x^i$ for $i \leq n$ from the first sum with the corresponding monomial $b_{n-i} x^{n-i}$ from the second sum. Thus we have

$$A(x)B(x) = \sum_{n\geq 0} \left(\sum_{i=0}^{n} a_i b_{n-i}\right) x^n = C(x).$$

We have seen that A(x)B(x) = C(x) because the coefficients of their series expansions are equal.

Theorem 2. Let \mathcal{A} and \mathcal{B} be classes of objects and let A(x) and B(x) be their generating functions. Then the class $\mathcal{C} = \mathcal{A} \times \mathcal{B}$ has generating function C(x) = A(x)B(x).

Proof. To show that C(x) and A(x)B(x) are equal, we show that the coefficients of their series expansions are equal.

First let $C(x) = \sum_{n\geq 0} c_n x^n$. Because $\mathcal{C} = \mathcal{A} \times \mathcal{B}$, the coefficient c_n is the total number of ways to obtain an ordered pair $(a, b) \in C$ of size n. Each pair is obtained by choosing an object $a \in \mathcal{A}$ of size $i \leq n$ (a_i choices) and an object $b \in \mathcal{B}$ of size n - i (b_{n-i} choices). Thus the total ways to obtain such a pair is

$$c_n = \sum_{i=0}^n a_i b_{n-i}.$$
 (2)

But these c_n turn out to also be the coefficients of the series expansion of A(x)B(x). If we let $A(x) = \sum_{j\geq 0} a_j x^j$ and $B(x) = \sum_{k\geq 0} b_k x^k$, then

$$A(x)B(x) = \left(\sum_{j\geq 0} a_j x^j\right) \times \left(\sum_{k\geq 0} b_k x^k\right).$$

In order to get the coefficient for x^n in this product, we must multiply each monomial $a_i x^i$ for $i \leq n$ from the first sum with the corresponding monomial $b_{n-i} x^{n-i}$ from the second sum. Thus we have

$$A(x)B(x) = \sum_{n\geq 0} \left(\sum_{i=0}^{n} a_i b_{n-i}\right) x^n.$$

Because the coefficients of this series expansion are just the c_n from (2), we have that $A(x)B(x) = \sum_{n\geq 0} c_n x^n = C(x)$.

18.310 Principles of Discrete Applied Mathematics Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.