Exercises

- 1. Show that a = 833 and b = 372 are relatively prime. Find s and t such that as + bt = 1 by the extended Euclidean algorithm.
 - What is the multiplicative inverse of 372 modulo 833?
 - Find a number a such that $a = 17 \pmod{372}$ and $a = 38 \pmod{833}$.
- 2. Find at least 8 roots to $x^2 = 1 \pmod{231}$. Hint: Use the Chinese Remainder Theorem.
- 3. Wilson's Theorem says that a number N is prime if and only if

$$(N-1)! = -1 \pmod{N}.$$

- If p is prime, then we know every number 1 < x < p is invertible modulo p. Which of these numbers are their own inverse?
- By pairing up multiplicative inverses, show that $(p-1)! = -1 \pmod{p}$ for prime p.
- Show that if n is not prime, then $(N-1)! \neq -1 \pmod{N}$. Hint: Consider $d = \gcd(N, (N-1)!)$.

18.310 Principles of Discrete Applied Mathematics Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.