18.310 Homework 4

Due Wednesday October 2nd at 6PM

Instructions: Remember to submit a separate PDF for each question.Do not forget to include a list of your collaborators or to state that you worked on your own.

1. Let $\left(a_{n}\right)_{n \geq 0}$ be the sequence defined by $a_{0}=0, a_{1}=5$ and $a_{n}=a_{n-1}+6 a_{n-2}$ for $n \geq 2$. Find an explicit expression for a_{n}.
2. Given some $r \in \mathbb{R}$, consider the generating function $F(x)=\frac{1}{(1-r x)^{2}}$ corresponding to a sequence $\left(f_{n}\right)_{\geq 0}$. Find an explicit expression for f_{n}.
3. A binary number consists of a sequence of 0 's and 1 's, such as 0100,110001 or even the empty sequence - containing no bits. Let F denote the set of all pairs (a, b) where a and b are binary numbers. Let d_{n} be the number of pairs in F having a total of n bits. Thus $d_{0}=1$ as it corresponds only to (\cdot, \cdot), while $d_{1}=4$ as there are 4 pairs with a total of 1 bit: $(0, \cdot),(1, \cdot),(\cdot, 0),(\cdot, 1)$.
(a) Find the generating function for $\left(d_{n}\right)_{n \geq 0}$
(b) Derive from it an explicit formula for d_{n}.
(c) Explain how you could have derived this expression directly without considering its generating function.

MIT OpenCourseWare
http://ocw.mit.edu

18.310 Principles of Discrete Applied Mathematics

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

