18.307: Integral Equations

Practice Set 1
M.I.T. Department of Mathematics

Spring 2006
Due: NEVER

This set is for your own practice; your solutions will not be collected nor graded.

1. (Prob. 8.4 in text by M. Masujima.) Solve the nonlinear integral equation

$$
\rho(\phi)=\exp \left[\int_{0}^{2 \pi} d \theta \cos (\phi-\theta) \rho(\theta)\right] .
$$

2. (Prob. 2.6 in text by M. Masujima.) Solve the integral equation

$$
u(x)=1+\int_{0}^{1} d y(1+x+y+x y)^{\nu} u(y), \quad 0 \leq x \leq 1, \quad \nu: \text { real. }
$$

Hint: Notice that $1+x+y+x y$ can be factorized.
3. (Prob. 2.3 in text by M. Masujima.) Consider the integral equation

$$
u(x)=f(x)+\lambda \int_{-\infty}^{\infty} d y e^{-x^{2}-y^{2}} u(y), \quad-\infty<x<\infty .
$$

(a) Solve this equation for $f=0$. For what values of λ does it have non-trivial solutions?
(b) Solve the equation for $f(x)=x^{m}$, where $m=0,1,2, \ldots$ Does this inhomogeneous equation have any solutions when λ is equal to an eigenvalue of the kernel? Explain.
Hint: Distinguish cases for m. You may wish to express your results in terms of the Gamma function, $\Gamma(z)=\int_{0}^{\infty} d t e^{-t} t^{z-1}$, $\operatorname{Re} z>0$.
4. (From Sec. 2.2 in text by M. Masujima.) (a) Instead of using the Fourier transform, find the Green function for the initial-value problem of the Schrödinger equation done in class by setting

$$
G(x, y)= \begin{cases}A e^{i k(x-y)}+B e^{-i k(x-y)}, & x>y \\ C e^{i k(x-y)}+D e^{-i k(x-y)}, & x<y\end{cases}
$$

and determining A, B, C and D directly from the appropriate conditions for $G(x, y)$ at $x=0$ and $x=y$.
(b) Find the Green function for the scattering problem of the Schrödinger equation done in class, where $\psi(x) \sim e^{i k x}+R e^{-i k x}$ as $x \rightarrow-\infty$ and $\psi(x) \sim T e^{i k x}$ as $x \rightarrow+\infty$, by casting $G(x, y)$ in the above form and avoiding the Fourier transform.
5. (From Prob. 3.2 in text by M. Masujima.) This problem explores different choices of the Green function in a version of Schrödinger's equation.
(a) Convert the radial Schrödinger equation

$$
\frac{d^{2}}{d r^{2}} \psi(r)-\frac{l(l+1)}{r^{2}} \psi(r)=\left[V(r)-k^{2}\right] \psi(r), \quad r>0
$$

into an integral equation by replacing the right-hand side of this equation by $\delta\left(r-r^{\prime}\right)$. The wave function $\psi(r)$ satisfies the initial condition

$$
\psi(r) \sim r^{l+1} \quad \text { as } r \rightarrow 0^{+}
$$

Show that the solution is an analytic function of l for $\operatorname{Re} l \geq-\frac{1}{2}$. Hint: Show that the Green function for this problem is $G\left(r, r^{\prime}\right)=0$ for $r<r^{\prime}$, and

$$
G\left(r, r^{\prime}\right)=(2 l+1)^{-1}\left[\frac{r^{l+1}}{\left(r^{\prime}\right)^{l}}-\frac{\left(r^{\prime}\right)^{l+1}}{r^{l}}\right], \quad r>r^{\prime}
$$

(b) In part (a), define the Green function by

$$
\frac{\partial^{2}}{\partial r^{2}} G\left(r, r^{\prime}\right)-\frac{l(l+1)}{r^{2}} G\left(r, r^{\prime}\right)+k^{2} G\left(r, r^{\prime}\right)=\delta\left(r-r^{\prime}\right)
$$

i.e., by including the contribution of k^{2} in the left-hand side. Determine this $G\left(r, r^{\prime}\right)$ under the same initial condition for $\psi(r)$.
6. (Prob. 3.16 in text by M. Masujima.) Consider the Volterra integral equation of the 2nd kind

$$
u(x)=f(x)+\lambda \int_{0}^{x} d y e^{x^{2}-y^{2}} u(y), \quad x>0 .
$$

(a) Sum up the iteration (Liouville-Neumann) series exactly and find the general solution to this equation. Verify that the solution is analytic in λ.
(b) As a check, solve this integral equation by converting it into a differential equation. Hint: Multiply both sides by $e^{-x^{2}}$ and differentiate.
7. (Prob. 2.13 in text by M. Masujima.) Discuss how you would solve the Volterra integral equation of the 2 nd kind,

$$
u(x)=f(x)+\lambda \int_{0}^{x} d y K(x, y) u(y)
$$

with the kernel given by $K(x, y)=\sum_{n=1}^{N} g_{n}(x) h_{n}(y)$.
8. (Prob. 3.3 in text by M. Masujima.) (a) Discuss how you would solve the integral equation

$$
\int_{0}^{x} d y K(x-y) u(y)=f(x), \quad x>0
$$

in which the kernel depends on the difference $(x-y)$ (such kernels are called "difference kernels" in part of the literature). This equation is called a Volterra equation of the 1 st kind (the u is missing outside the integral).
(b) Apply your method to the case $K(x)=x^{-\nu}$, where $0<\nu<1$. The resulting equation is called generalized Abel's equation.

