18.307: Integral Equations

## Problem Set 1

M.I.T. Department of Mathematics

Spring 2006

1. (Prob. 2.5 in text by M. Masujima.) Consider the integral equation

$$
u(x)=1+\lambda \int_{0}^{1} d y \frac{x^{n}-y^{n}}{x-y} u(y), \quad 0 \leq x \leq 1
$$

(a) Solve this equation for $n=2$. For what values of $\lambda$ does the equation have no solutions?
(b) Discuss how you would solve this integral equation for arbitrary positive integer $n$.
2. (Prob. 2.4 in text by M. Masujima.) Solve the equation

$$
u(\theta)=1+\lambda \int_{0}^{2 \pi} d \phi \sin (\phi-\theta) u(\phi), \quad 0 \leq \theta<2 \pi
$$

where $u(\theta)$ is periodic with period $2 \pi$. Does the kernel of this equation have any real eigenvalues?
3. (Prob. 8.17 in text by M. Masujima.) Solve the nonlinear equation

$$
u(x)-\lambda \int_{0}^{1} d y u^{2}(y)=1
$$

In particular, identify the bifurcation points of this equation. What kind of point is $\lambda=0$ ? What are the non-trivial solutions of the corresponding homogeneous equation?

