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1.1 Statement: Green’s functions (problem 01). 

The Green’s function for the heat equation in the infinite line solves the problem 

Gt = Gxx, for −∞ < x < ∞ and t > 0,	 (1.1) 

with the initial condition G(x, 0) = δ(x), (1.2) 

where δ( ) denotes Dirac’s delta function. In addition, G is bounded1 for any t > 0.·

For any positive constant ν > 0, ν δ(ν x) = δ(x). It follows that: If G is a solution, then 

ν G(ν x, ν2 t) is a solution. 

1This guarantees uniqueness. The heat equation has some very badly behaved solutions if some restriction such 

as boundedness is not imposed. 
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Hence, from uniqueness, for any ν > 0, G(x, t) ≡ ν G(ν x, ν2 t). (1.3) 

Thus 1 x 
G(x, t) = g , (1.4)√

t 
√

t 

for some function g = g(ξ) — Proof: substitute ν = 1/
√

t in (1.3). 

Notice that, from the equation — assuming that Gx vanishes as — it follows thatx → ±∞
∞ 

G(x, t) dx is a constant, independent of time. Hence, from the initial conditions 
−∞ 

∞
1 =
 G(x, t) dx. (1.5)


−∞ 

Tasks: 

1. Substitute (1.4) into (1.1), and get an o.d.e. for g. 

2. Solve the o.d.e. for g, and thus find the Green’s function. 

Hints: (i) g is even, since (1.1 – 1.2) is invariant under reflection across the t-axis. (ii) Since G 

vanishes as t ↓ 0 for any fixed x = 0� , g(ξ) vanishes, as ξ → ±∞, faster than 1/ξ. (iii) (1.5) must 

apply. (iv) The o.d.e. for g is second order. It can be integrated once, to yield a first order equation. 

(v) The general solution for the o.d.e. that g satisfies has two constants. These can be determined 

using either (i) and (iii), or (ii) and (iii) — (i) and (ii) turn out to be equivalent. 

1.2 Statement: Green’s functions (problem 03). 

Find the Green’s function for the initial value problem for the heat equation with mixed (as stated 

below) boundary conditions in an interval. Namely, solve the problem 

Gt = Gxx for 0 < x < 1 and t > 0, with (1.6) 

(a) Boundary conditions Gx = 0 at x = 0 and G = 0 at x = 1. 

(b) Initial conditions G(x, 0) = δ(x − y), where 0 < y < 1, and δ = Dirac’s delta function. ⎫⎪⎪⎪⎪⎬ 
This problem can be done by


1 (x − y)2 

G∞(x, y, t) = 
2 
√

π t 
exp −

4 t 
. (1.7)the method of images, using the


Green’s function for the infinite line 

Note that: 

⎪⎪⎪⎪⎭ 
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1. Let u solve the heat equation, with ux = 0 at x = 0, for all times. Then u is even. 

Proof: From the equation, uxt = uxxx. Thus uxxx = 0 at x = 0 for all t. Again, from the equation, 

(u3x)t = u5x. Hence u5x = 0 at x = 0 for all t. Continue the argument, and show that all the odd 

derivatives of u vanish. Hence u is even. The proof of item 2 is identical. 

2. Let u solve the heat equation, with u = 0 at x = 0, for all times. Then u is odd. 

3. If u is a solution of the heat equation with even initial data, then u is even. 

4. If u is a solution of the heat equation with odd initial data, then u is odd. 

5. If u is a solution of the heat equation with periodic initial data, then u is periodic. 

Proof of 3–5: use uniqueness, and the symmetries of the equation and data. 

HINT: Use 1-5 to replace the problem in (1.6) by one on the infinite line, periodic (which period?) 

and with the appropriate odd/even properties. Then use (1.7) to solve this new problem. 

1.3 Statement: Green’s functions (problem 04). 

Find the Green’s function for the initial value problem for the heat equation with Robin (as stated 

below) boundary conditions in the semi-infinite line. Namely, solve the problem 

Gt = Gxx for x > 0 and t > 0, with (1.8) 

(a) Boundary condition G − Gx = 0 at x = 0. 

(b) Initial conditions G(x, 0) = δ(x − y), where 0 < y and δ = Dirac’s delta function. 

(c) G is bounded for any t > 0. ⎫⎪⎪⎪⎪⎬ 
This problem can be done by
 G∞(x, y, t) = G ( )y, t−x∞ � 

1 (x − y)2 (1.9) 
exp . 

the method of images, using the


Green’s function for the infinite line

⎪⎪⎪⎪⎭ 

=

2 
√

π t

−


4 t


Note that, if u solves the heat equation, with u − ux = 0 at x = 0, then: 

1. v = u − ux solves the heat equation with v = 0 at x = 0. 

2. u = e x 
∞ 

e−s v(s, t) ds.

x 
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HINT: (I) Use 1-2 to replace the problem for G by one solvable using the method of images — recall 

that, vt = vxx and v = 0 at x = 0 means that v is odd. (II) Use (1.9) to solve this new problem. 

Remark 1.1 You have to be careful with Robin boundary conditions. For example: 

Tt = Txx for x > 0 and t > 0, with 

T + Tx = 0 at x = 0, has the solutions T = e−x+t , which are well behaved in space, but grow 

exponentially in time. The reason is that the condition Tx = −T leads to a run-away heating: the 

hotter it gets at the origin, the larger the heat flow across there is. Physically, this is non-sense. 

1.4 Statement: Green’s functions (problem 05). 

The Green’s function for the heat equation half plane Dirichlet2 signaling problem is defined by 

Gt = Gxx, for −∞ < t < ∞ and x > 0, (1.10) 

with the boundary condition G(0, t) = δ(t), (1.11) 

where δ( ) denotes Dirac’s delta function. In addition: G is bounded away from the origin (0, 0)·
and satisfies causality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G = 0 for t < 0. 

Thus we only need to find G for t ≥ 0 only. 

For any constant ν = 0, � ν2 δ(ν2 t) = δ(t). Thus: If G is a solution, ν2 G(ν x, ν2 t) is a solution. 

Hence, from uniqueness, for any ν = 0, G(x, t) = ν2 G(ν x, ν2 t). (1.12) 

1 x2 

Set ν = x/t to get, for some function g = g(ξ), G(x, t) = g . (1.13)
t t 

Notice that 

A. g(0) = 0. This follows because, for any t > 0 fixed, G must vanish as x 0. � � � 
↓ 

∞ dξ ∞ ∞ dξ 
B. g(ξ) = 1. We have G(x, t) dt = g(ξ) = constant, for any x > 0. 

0 ξ −∞ 0 ξ 

By taking x 0, and using (1.11), the result follows. ↓ 

– Task 1: Substitute (1.13) into (1.10), and get an o.d.e. for g. 

2Temperature prescribed on the boundary. 
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– Task 2: Solve the o.d.e. for g, and thus find the Green’s function. 

Hints: (i) The o.d.e. for g is second order. It can be integrated once, to yield a first order equation. 

(ii) The general solution to the o.d.e. in 1 has two constants. These follow from A – B above. 

Remark 1.2 For any fixed x > 0, the formula in (1.13) should, as t 0, smoothly match with ↓ 

the solution G ≡ 0 for t < 0. This will be guaranteed by the fact that g(ξ) vanishes exponentially as 

ξ →∞. Hence, G as given by (1.13), as well as all its derivatives, vanish as t ↓ 0 for any x > 0. 

THE END. 
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