MIT OpenCourseWare
http://ocw.mit.edu

18.306 Advanced Partial Differential Equations with Applications

 Fall 2009For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Exam Number 02
 18.306 - MIT (Fall 2009)

Rodolfo R. Rosales

December 2, 2009

Due: Last day of lectures.

Contents

1.1 Statement: Green's functions (problem 01). 1
Green's function for the heat equation in the infinite line. 1
1.2 Statement: Green's functions (problem 03). 2
Green's function for the 1-D heat equation. Mixed B.C.'s. 2
1.3 Statement: Green's functions (problem 04). 3
Green's function for the 1-D heat equation. A Robin problem. 3
1.4 Statement: Green's functions (problem 05). 4
Green's function. Heat equation half plane Dirichelet signaling. 4

1.1 Statement: Green's functions (problem 01).

The Green's function for the heat equation in the infinite line solves the problem

$$
\begin{equation*}
G_{t}=G_{x x}, \quad \text { for } \quad-\infty<x<\infty \quad \text { and } \quad t>0 \tag{1.1}
\end{equation*}
$$

with the initial condition

$$
\begin{equation*}
G(x, 0)=\delta(x) \tag{1.2}
\end{equation*}
$$

where $\delta(\cdot)$ denotes Dirac's delta function. In addition, G is bounded ${ }^{1}$ for any $t>0$.
For any positive constant $\nu>0, \boldsymbol{\nu} \boldsymbol{\delta}(\boldsymbol{\nu} \boldsymbol{x})=\boldsymbol{\delta}(\boldsymbol{x})$. It follows that: If G is a solution, then $\nu G\left(\nu x, \nu^{2} t\right)$ is a solution.

[^0]Hence, from uniqueness, for any $\nu>0$,

$$
\begin{equation*}
G(x, t) \equiv \nu G\left(\nu x, \nu^{2} t\right) \tag{1.3}
\end{equation*}
$$

Thus

$$
\begin{equation*}
G(x, t)=\frac{1}{\sqrt{t}} g\left(\frac{x}{\sqrt{t}}\right) \tag{1.4}
\end{equation*}
$$

for some function $g=g(\xi)$ — Proof: substitute $\nu=1 / \sqrt{t}$ in (1.3).
Notice that, from the equation - assuming that G_{x} vanishes as $x \rightarrow \pm \infty-$ it follows that $\int_{-\infty}^{\infty} G(x, t) d x$ is a constant, independent of time. Hence, from the initial conditions

$$
\begin{equation*}
1=\int_{-\infty}^{\infty} G(x, t) d x \tag{1.5}
\end{equation*}
$$

Tasks:

1. Substitute (1.4) into (1.1), and get an o.d.e. for g.
2. Solve the o.d.e. for g, and thus find the Green's function.

Hints: (i) g is even, since (1.1-1.2) is invariant under reflection across the t-axis. (ii) Since G vanishes as $t \downarrow 0$ for any fixed $x \neq 0, g(\xi)$ vanishes, as $\xi \rightarrow \pm \infty$, faster than $1 / \xi$. (iii) (1.5) must apply. (iv) The o.d.e. for g is second order. It can be integrated once, to yield a first order equation. (v) The general solution for the o.d.e. that g satisfies has two constants. These can be determined using either (i) and (iii), or (ii) and (iii) - (i) and (ii) turn out to be equivalent.

1.2 Statement: Green's functions (problem 03).

Find the Green's function for the initial value problem for the heat equation with mixed (as stated below) boundary conditions in an interval. Namely, solve the problem

$$
\begin{equation*}
\boldsymbol{G}_{\boldsymbol{t}}=\boldsymbol{G}_{\boldsymbol{x} \boldsymbol{x}} \text { for } \mathbf{0}<\boldsymbol{x}<\mathbf{1} \text { and } \boldsymbol{t}>\mathbf{0}, \quad \text { with } \tag{1.6}
\end{equation*}
$$

(a) Boundary conditions $\boldsymbol{G}_{\boldsymbol{x}}=\mathbf{0}$ at $\boldsymbol{x}=\mathbf{0}$ and $\boldsymbol{G}=\mathbf{0}$ at $\boldsymbol{x}=\mathbf{1}$.
(b) Initial conditions $\boldsymbol{G}(\boldsymbol{x}, \mathbf{0})=\boldsymbol{\delta}(\boldsymbol{x}-\boldsymbol{y})$, where $\mathbf{0}<\boldsymbol{y}<\mathbf{1}$, and $\boldsymbol{\delta}=$ Dirac's delta function.

This problem can be done by the method of images, using the $\}$

$$
\begin{equation*}
G_{\infty}(x, y, t)=\frac{1}{2 \sqrt{\pi t}} \exp \left(-\frac{(x-y)^{2}}{4 t}\right) \tag{1.7}
\end{equation*}
$$

Green's function for the infinite line
Note that:

1. Let u solve the heat equation, with $u_{x}=0$ at $x=0$, for all times. Then u is even. Proof: From the equation, $u_{x t}=u_{x x x}$. Thus $u_{x x x}=0$ at $x=0$ for all t. Again, from the equation, $\left(u_{3 x}\right)_{t}=u_{5 x}$. Hence $u_{5 x}=0$ at $x=0$ for all t. Continue the argument, and show that all the odd derivatives of u vanish. Hence u is even. The proof of item 2 is identical.
2. Let u solve the heat equation, with $u=0$ at $x=0$, for all times. Then u is odd.
3. If u is a solution of the heat equation with even initial data, then u is even.
4. If u is a solution of the heat equation with odd initial data, then u is odd.
5. If u is a solution of the heat equation with periodic initial data, then u is periodic.

Proof of 3-5: use uniqueness, and the symmetries of the equation and data.

HINT: Use 1-5 to replace the problem in (1.6) by one on the infinite line, periodic (which period?) and with the appropriate odd/even properties. Then use (1.7) to solve this new problem.

1.3 Statement: Green's functions (problem 04).

Find the Green's function for the initial value problem for the heat equation with Robin (as stated below) boundary conditions in the semi-infinite line. Namely, solve the problem

$$
\begin{equation*}
\boldsymbol{G}_{\boldsymbol{t}}=\boldsymbol{G}_{\boldsymbol{x} \boldsymbol{x}} \text { for } \boldsymbol{x}>0 \text { and } \boldsymbol{t}>0, \quad \text { with } \tag{1.8}
\end{equation*}
$$

(a) Boundary condition $\boldsymbol{G}-\boldsymbol{G}_{\boldsymbol{x}}=\mathbf{0}$ at $\boldsymbol{x}=\mathbf{0}$.
(b) Initial conditions $\boldsymbol{G}(\boldsymbol{x}, \mathbf{0})=\boldsymbol{\delta}(\boldsymbol{x}-\boldsymbol{y})$, where $\mathbf{0}<\boldsymbol{y}$ and $\boldsymbol{\delta}=$ Dirac's delta function.
(c) \boldsymbol{G} is bounded for any $\boldsymbol{t}>\boldsymbol{0}$.

This problem can be done by $\quad G_{\infty}(x, y, t)=G_{\infty}(x-y, t)$ $\left.\begin{array}{l}\text { the method of images, using the } \\ \text { Green's function for the infinite line }\end{array}\right\} \quad=\frac{1}{2 \sqrt{\pi t}} \exp \left(-\frac{(x-y)^{2}}{4 t}\right)$.

Note that, if u solves the heat equation, with $u-u_{x}=0$ at $x=0$, then:

1. $v=u-u_{x}$ solves the heat equation with $v=0$ at $x=0$.
2. $u=e^{x} \int_{x}^{\infty} e^{-s} v(s, t) d s$.

HINT: (I) Use 1-2 to replace the problem for G by one solvable using the method of images - recall that, $v_{t}=v_{x x}$ and $v=0$ at $x=0$ means that v is odd. (II) Use (1.9) to solve this new problem.

Remark 1.1 You have to be careful with Robin boundary conditions. For example:

$$
T_{t}=T_{x x} \quad \text { for } \quad x>0 \text { and } t>0, \quad \text { with }
$$

$T+T_{x}=0$ at $x=0$, has the solutions $\boldsymbol{T}=e^{-\boldsymbol{x}+\boldsymbol{t}}$, which are well behaved in space, but grow exponentially in time. The reason is that the condition $T_{x}=-T$ leads to a run-away heating: the hotter it gets at the origin, the larger the heat flow across there is. Physically, this is non-sense.

1.4 Statement: Green's functions (problem 05).

The Green's function for the heat equation half plane Dirichlet ${ }^{2}$ signaling problem is defined by

$$
\begin{equation*}
G_{t}=G_{x x}, \quad \text { for } \quad-\infty<t<\infty \quad \text { and } \quad x>0 \tag{1.10}
\end{equation*}
$$

with the boundary condition

$$
\begin{equation*}
G(0, t)=\delta(t) \tag{1.11}
\end{equation*}
$$

where $\delta(\cdot)$ denotes Dirac's delta function. In addition: G is bounded away from the origin $(0,0)$
 Thus we only need to find G for $\boldsymbol{t} \geq \mathbf{0}$ only.

For any constant $\nu \neq 0, \boldsymbol{\nu}^{\mathbf{2}} \boldsymbol{\delta}\left(\boldsymbol{\nu}^{\mathbf{2}} \boldsymbol{t}\right)=\boldsymbol{\delta}(\boldsymbol{t})$. Thus: If G is a solution, $\nu^{2} G\left(\nu x, \nu^{2} t\right)$ is a solution. Hence, from uniqueness, for any $\nu \neq 0$,

$$
\begin{equation*}
G(x, t)=\nu^{2} G\left(\nu x, \nu^{2} t\right) \tag{1.12}
\end{equation*}
$$

$$
\begin{equation*}
\text { Set } \nu=x / t \text { to get, for some function } g=g(\xi), \quad G(x, t)=\frac{1}{t} g\left(\frac{x^{2}}{t}\right) \tag{1.13}
\end{equation*}
$$

Notice that
A. $\boldsymbol{g}(0)=0$. This follows because, for any $t>0$ fixed, G must vanish as $x \downarrow 0$.
B. $\int_{0}^{\infty} \boldsymbol{g}(\boldsymbol{\xi}) \frac{\boldsymbol{d} \boldsymbol{\xi}}{\boldsymbol{\xi}}=1$. We have $\int_{-\infty}^{\infty} G(x, t) d t=\int_{0}^{\infty} g(\xi) \frac{d \xi}{\xi}=$ constant, for any $x>0$. By taking $x \downarrow 0$, and using (1.11), the result follows.

- Task 1: Substitute (1.13) into (1.10), and get an o.d.e. for g.

[^1]- Task 2: Solve the o.d.e. for g, and thus find the Green's function.

Hints: (i) The o.d.e. for g is second order. It can be integrated once, to yield a first order equation. (ii) The general solution to the o.d.e. in $\mathbf{1}$ has two constants. These follow from $\mathbf{A}-\mathbf{B}$ above.

Remark 1.2 For any fixed $x>0$, the formula in (1.13) should, as $t \downarrow 0$, smoothly match with the solution $G \equiv 0$ for $t<0$. This will be guaranteed by the fact that $g(\xi)$ vanishes exponentially as $\xi \rightarrow \infty$. Hence, G as given by (1.13), as well as all its derivatives, vanish as $t \downarrow 0$ for any $x>0$.

THE END.

[^0]: ${ }^{1}$ This guarantees uniqueness. The heat equation has some very badly behaved solutions if some restriction such as boundedness is not imposed.

[^1]: ${ }^{2}$ Temperature prescribed on the boundary.

