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Abstract 
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1 Linear First Order PDE. 

1.1 Statement: Linear 1st order PDE (problem 01). 

Part 1. Find the general solutions to the two 1st order linear scalar PDE 

xux + y uy = 0, and y vx − x vy = 0. (1.1) 

Hint: The general solutions take a particular simple form in polar coordinates.


Part 2. For u, find the solution such that on the circle x 2 + y 2 = 2, it satisfies u = x. Where is this


solution determined by the data given?


Part 3. Is there a solution to the equation for v such that v(x, 0) = x, for −∞ < x < ∞? 

Part 4. How does the general solution for u changes if the equation is modified to 

xux + y uy = (x 2 + y 2) sin(x 2 + y 2)? (1.2) 

1.2 Statement: Linear 1st order PDE (problem 02). 

Consider the following problem 

xux + y uy = 1 + y 2 , with u(x, 1) = 1 + x for −∞ < x < ∞. (1.3) 

Part 1. Use the method of characteristics to solve this problem. Write the solution u = u(x, y)


(explicitly) as a function of x and y on y > 0.


Part 2. Explain why u = u(x, y) is not uniquely determined by the problem above for y ≤ 0 —


you may use a diagram.


1.3 Statement: Linear 1st order PDE (problem 03). 

Consider the following problem 

ux + 2 xuy = y, with u(0, y) = f(y) for −∞ < y < ∞, (1.4) 

where f = f(y) is an “arbitrary” function.


Part 1. Use the method of characteristics to solve this problem. Write the solution u = u(x, y) as


a function of x, y, and f . In which part of the (x, y) plane is the solution uniquely determined?


Part 2. Let f have a continuous derivative. Are then the partial derivatives ux and ux continuous?
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1.4 Statement: Linear 1st order PDE (problem 04). 

Discuss the two problems 

ux + 2 xuy = y, with 

⎧ 
⎪⎨ 

⎪⎩ 

(a) u(x, x2) = 1 for − 1 < x < 1, 

(b) u(x, x2) = 
3
1 x3 + π for − 1 < x < 1. 

(1.5)


How many solutions exist in each case? 

Note that the data in these problems is prescribed along a characteristic! 

1.5 Statement: Linear 1st order PDE (problem 05). 

Consider the problem 

xux + (x + y) uy = 1, with u(1, y) = y for 0 < y < 1. (1.6) 

Question 1. Write the solution u = u(x, y) in the region where it is uniquely determined. 

Question 2. Describe the region in the plane where the solution to (1.6) is uniquely determined. 

Question 3. Write all the functions u = u(x, y) that satisfy (1.6) on x > 0 and −∞ < y < ∞. 

Question 4. Write all the functions u = u(x, y) that satisfy the pde in (1.6) for x < 0. 

Question 5. What happens along x = 0? Can you produce solutions to the pde that are continuous 

in the “punctured” plane (plane minus the origin)? 

1.6 Statement: Linear 1st order PDE (problem 06). 

Consider the pde 

ux + 2 xuy = y + xu. (1.7) 

Part 1. Write the characteristic form for this equation, and use it to write the general solution 

u = u(x, y) to the pde — the general solution should involve an arbitrary function f = f( ). ·
Part 2. Find u = u(x, y) if u = u(0, y) = 1 + y 2 for 1 < y < 2. In which region is the solution u 

uniquely defined by this? 

1.7 Statement: Linear 1st order PDE (problem 07). 

A function u = u(x, y) is called homogeneous of degree n > 0 if and only if u(λ x, λ y) = λn u(x, y), 

for any constant λ, over the range of independent variables for which u is defined. 
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Part 1. Consider the homogeneous functions of degree n, defined on the right hand plane x > 0, 

and obtain a pde that all such functions must satisfy. [Hint: differentiate the equation satisfied by 

u, and set λ = 1.] 

Part 2. Use the method of characteristics to find the general solution of the pde derived in part 1, 

and show that all its solutions are homogeneous functions of degree n. 

1.8 Statement: Discontinuous Coefficients in Linear 1st order pde #01. 

Singularities (in particular, discontinuities) in the coefficients of a pde can create ambiguities in 

the meaning1 of the equation. Sometimes these ambiguities can be easily resolved, and other times 

they cannot. In all cases, however, it is advisable to go back to the physical system that the pde 

is supposed to model, and either (a) Check that the meaning given to the solutions across the 

singularities in the coefficients makes physical sense, or (b) Seek for the meaning, if not clear, there. 

In this exercise we consider a simple example of the situation described in the prior paragraph. 

Consider the initial value problem 

ut + c ux = sign(x) for t > 0 and −∞ < x < ∞, with u(x, 0) = g(x), (1.8) 

where c is some constant and g is some arbitrary function — which we will assume, for simplicity, 

is smooth. The task is now to give a unique, unambiguous, meaning to this I.V.P. 

An important (practical) consideration is that the solution to any mathematical question must not 

be sensitive to small changes in the formulation of the problem. This implies that 

The solution to the problem in (1.8) should not change very much [for any finite time 
� 

(1.9) 
interval 0 < t < T ] if either c, or the forcing function sign(x), are modified slightly. 

We will use this requirement to give a clear meaning to the problem in (1.8), as follows. 

Step 1. Replace (1.8) by the set of problems, parameterized by � > 0, 

ut + c ux = f�(x) for t > 0 and −∞ < x < ∞, with u(x, 0) = g(x), (1.10) 

where f� is a smooth, non-decreasing, function satisfying f�(x) = sign(x) for x > �. Show that | | 
the limit � 0 of the solutions to (1.10) exists, and it is independent of the choice of the functions f�.↓ 

1What does it mean to be a solution? 
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Thus we can use the � 0 limit of (1.10) to give a clear meaning to (1.8). ↓ 
Hint. Write the solution to (1.10) using characteristics, and then take the limit � 0. ↓ 

Step 2. Show that the solution obtained in step 1 is not sensitive to small changes in the initial 

data g = g(x), or to changes in the value of c — as long as c =� 0. What happens for c ≈ 0? 

1.9 Statement: Discontinuous Coefficients in Linear 1st order pde #02. 

Singularities (in particular, discontinuities) in the coefficients of a pde can create ambiguities in 

the meaning2 of the equation. Sometimes these ambiguities can be easily resolved, and other times 

they cannot. In all cases, however, it is advisable to go back to the physical system that the pde 

is supposed to model, and either (a) Check that the meaning given to the solutions across the 

singularities in the coefficients makes physical sense, or (b) Seek for the meaning, if not clear, there. 

In this exercise we consider an example of the situation described in the prior paragraph. The task 

is to give a unique, unambiguous, meaning to the following initial value problem (I.V.P.) 

ut + sign(x) ux = g(x) for t > 0 and −∞ < x < ∞, with u(x, 0) = U(x), (1.11) 

where g and U are “arbitrary” smooth functions. An important (practical) consideration is that 

well posed questions do not have answers sensitive to small changes in problem formulation. Hence 

The solution to the problem in (1.11) should not change very much [for any finite time 
� 

(1.12) 
interval 0 < t < T ] if either g, or the coefficient function sign(x), are modified slightly. 

We use this requirement to give a clear meaning to the problem in (1.11), as follows. 

STEP 1. Replace (1.11) by the set of problems, parameterized by � > 0, 

ut + f�(x) ux = g(x) for t > 0 and −∞ < x < ∞, with u(x, 0) = U(x), (1.13) 

where f� is a smooth, non-decreasing, function satisfying f�(x) = sign(x) for x > �. Show that | | 
the limit � 0 of the solutions to (1.13) exists, and it is independent of the choice of the functions f�.↓ 
Hint: write the problem (1.13) in characteristic form, and consider what happens with the charac

teristics as � 0. Drawing them in the space time diagram should be helpful. ↓ 
2What does it mean to be a solution? 
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Thus we can use the � 0 limit of (1.13) to give a clear meaning to (1.11). ↓ 

Hint/warning: be careful with the limit in the region |x| ≤ t ! The best formulation of the limit 

is as two signaling/initial value problems: one for x, t > 0 and another one for x < 0 < t — each 

with appropriate boundary conditions on x = 0, t > 0. 

STEP 2. Show that the solution obtained in step 1 is not sensitive to small changes in the functions 

g = g(x) or U = U(x). 

1.10	 Statement: Discontinuous Coefficients in Linear 1st order pde 

#03. 

In the prior two problems (Discontinuous Coefficients in Linear 1st order pde #01 and #02) we con

sidered a first order, scalar, linear pde in 1-D space-time with discontinuous coefficients. In problem 

#01 the discontinuity was introduced in the source term, while in problem #02 the discontinuity 

was introduced in the characteristic speed. In both cases we showed that the solution can be de

fined without ambiguities as the limit of the solutions for the problems where the discontinuities 

are eliminated by “smearing” the discontinuous coefficient over a small interval. 

In this problem we will consider the situation where discontinuities are introduced in both the 

characteristic speed and in the source term. Namely, consider the following initial value problem 

ut + sign(x) ux = sign(x) for t > 0 and −∞ < x < ∞, with u(x, 0) = U(x), (1.14) 

where U is an “arbitrary” smooth function. We now ask the question: Is it possible to give a 

unique, unambiguous,meaning to this I.V.P., following the same approach used in the two 

prior exercises? That is, consider the set of problems (parameterized by � > 0) given by 

ut + f�(x) ux = g�(x) for t > 0 and −∞ < x < ∞, with u(x, 0) = U(x), (1.15) 

where f� and g� are smooth, non-decreasing, functions satisfying f�(x) = g�(x) = sign(x) for x > �.| | 
Then we would like to show that the limit � 0 of the solutions to (1.15) exists, and that it is ↓ 
independent of the choice of the functions f� and g�. Show that this is false. Namely: the limit 

� 0 of the solutions to (1.15), if any, depends on the particular selection of the functions f� and ↓ 
g�. In particular, the answer to the question above is: No, it is not possible to give a unique, 

unambiguous, meaning to the I.V.P. in (1.14) without further information about the solutions. 



Rosales 18.306 Problem List.	 9 

Remark 1.1 This does not mean that the problem in (1.14) lacks meaning under all possible 

circumstances. If extra information about the “physics” behind the problem is known, then a meaning 

might be attached. For example: assume that the discontinuities in the coefficients of (1.14) arise 

because of approximations to scales that we cannot resolve, but that the scales involved in the source 

terms are much larger than the scales involved in the wave speeds. This means that the problem can 

be considered as an approximation to something of the form 

ut + f�(x) ux = gδ(x) for t > 0 and −∞ < x < ∞, with u(x, 0) = U(x), (1.16) 

where:	 (i) f� and gδ are smooth, non-decreasing, functions satisfying f�(x) = sign(x) for x > � | | 
and gδ(x) = sign(x) for |x| > δ. (ii) 0 < � � δ � 1. Furthermore, assume that the limit of gδ(0) as 

δ 0 exists. In this case the problem in (1.14) can be given a meaning as follows: First, take ↓ 
the limit � 0 of (1.16) — this as it is done in the problem “Discontinuous Coefficients in Linear ↓ 
1st order pde #02”. Then take the limit δ 0 — this is trivial. ↓ 

Hint: in order to do this exercise, take a look at the answer to the problem Discontinuous Coeffi

cients in Linear 1st order pde #02, and find where the arguments there go wrong. This should give 

you a pretty good idea of what is wrong with the limit � 0 in (1.15). ↓ 

PART 2. Let the (continuous) function S = S(x) be defined by 

S(x) = sign(x) for |x| ≥ 1, and S(x) = x for |x| ≤ 1. (1.17) 

Calculate the limit � 0 of (1.15) in the following two cases — you should get different answers! ↓ 
Case 1: f�(x) = S(x/�) and g�(x) = S(x/�2). 

Case 2: f�(x) = S(x/�2) and g�(x) = S(x/�). 

1.11	 Statement: Discontinuous Coefficients in Linear 1st order pde 

#04. 

The results of the prior exercise (Discontinuous Coefficients in Linear 1st order pde #03) would 

seem to indicate that the following initial value problem 

ut + sign(x) ux = a δ(x) u for t > 0 and −∞ < x < ∞, with u(x, 0) = U(x), (1.18) 



�

�
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— where U is an “arbitrary” smooth function, δ( ) is Dirac’s delta function, and a is a constant — ·
has little or no chance of being meaningful.3 This is generally true. However, consider the special 

case when a = −2. Then, at least formally — since d sign(x)/dx = 2 δ(x) — (1.18) is equivalent to 

ut + (sign(x) u) = 0 for t > 0 and −∞ < x < ∞, with u(x, 0) = U(x). (1.19) x 

Assume now that u is the density of some conserved quantity — in particular, u must be non

negative: u ≥ 0 — with flux given by Q = sign(x) u. Then show that (1.19) has a unique, 

un-ambiguous meaning, and write an explicit formula for the solution. 

Hint: The equation has a clear meaning in each of the regions x, t > 0 and x < 0 < t. Thus pose the 

problems in each of these regions, in terms of the (unknown) values of the solution along the sides 

of the time axis: u(0±, t) = V±(t). Then use the fact that u is a non-negative conserved density to 

find V±(t) — you will need to invoke the integral form of the conservation law. 

1.12	 Statement: Discontinuous Coefficients in Linear 1st order pde 

#05. 

The results of the prior exercise (Discontinuous Coefficients in Linear 1st order pde #04) indicate 

that it may be possible to assign a unique, unambiguous meaning to initial value problems of 

the form 

ut + (a(x) u + b(x))x = 0 for t > 0 and −∞ < x < ∞, with u(x, 0) = U(x), (1.20) 

where 

a1. U ≥ 0 is an “arbitrary” smooth function. 

a2. a = a(x) is smooth for x = 0, and has a simple discontinuity at x = 0, where a and its deriva

tives have limits as x 0 or x 0. In particular, let the left and right limits of a at x = 0 be ↓	 ↑ 
aL = lim a(x) and aR = lim a(x), respectively. 

x→0−	 x→0+ 

a3. b = b(x) is smooth for x = 0, and has a simple discontinuity at x = 0, where b and its deriva

tives have limits as x 0 or x 0. In particular, let the left and right limits of b at x = 0 be ↓	 ↑ 
bL = lim b(x) and bR = lim b(x), respectively. 

x→0−	 x→0+ 

3The delta function forcing in (1.18) is, clearly, much more singular than a mere discontinuity — which was the 

subject of the prior exercise. 
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a4. u is the density of some conserved quantity — in particular, u must be non-negative: u ≥ 0 

— with flux given by Q = a(x) u + b(x). 

QUESTION: under which conditions on aL, aR, bL, and bR can you assign a unique and unam

biguous meaning to the problem in (1.20)? Justify your answer, and explain what goes wrong when 

the conditions are violated. 

Hint 1. The equation has a clear meaning in each of the regions x, t > 0 and x < 0 < t. Thus 

pose the problems in each of these regions, in terms of the (unknown) values of the solution along 

the sides of the time axis: VL(t) = u(−0, t) and VR(t) = u(+0, t). Then use the fact that u is a 

non-negative conserved density function to find VL(t) and VR(t) (you will need to invoke the integral 

form of the conservation law). There are several cases to consider, depending on the signs of aL, 

aR, and bR − bL — some with a unique solution, and others with either too many or no solutions. 

Make sure that your solution satisfies CAUSALITY. In other words: information must flow along 

the characteristics FORWARD in time. 

Remark 1.2 It is important that the equation be compatible with the restriction in a4. You will 

need to use this condition when investigating what happens with the solution across x = 0. However, 

it is also important that a4 be compatible with the equation in the regions where a and b are smooth. 

In other words: the characteristic equations should be such that, if u starts non-negative along 

an arbitrary characteristic, it stays nonnegative for all future times. 

d b 
A sufficient condition that guarantees this is 

d x 
≤ 0. (1.21) 

Challenge/optional question: prove this. 

Hint 2. (i) Along a characteristic, for all times: either a > 0, or a < 0, or a = 0. WHY? (ii) When 
d 

a = 0, write a simple equation for (a u) along the characteristic, which will allow you to track �
d t

the sign of (a u), and show that it does not change. 
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2 Semi-Linear First Order PDE. 

2.1 Statement: Semi-Linear 1st order PDE (problem 01). 

Consider the following problem (here f = f(y) is an “arbitrary” function) 

ux + 2 xuy = 2 xu 2 , with u(0, y) = f(y) for −∞ < y < ∞. (2.1) 

Part 1. Use the method of characteristics to solve this problem. Write the solution u = u(x, y) as 

a function of x, y, and f . Describe the part of the (x, y) plane where the solution is determined. 

What happens if f ≤ 0 everywhere? What happens when f > 0 somewhere? 

Part 2. Let f(y) = y. Explicitly describe the region where the solution is defined. 

2.2 Statement: Semi-Linear 1st order PDE (problem 02). 

Discuss the two problems 

ux + 2 xuy = 2 xu 2 ,
 with


⎧ 
⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎩ 

(a) u(x, x2) = 1 for − 1 < x < 1, 

(b) u(x, x
2) = −π/(1 + π x2) for − 1 < x < 1,
 (2.2)


(c) u(x, x2) = (1− x2/4)/4 for − 1 < x < 1. 

How many solutions exist in each case? Where are they uniquely defined? 

Note that the data in these problems is prescribed along a characteristic! 

3 Kinematic Waves. 

3.1 Statement: Conservation Equation in Chromatography. 

In chromatography, and similar exchange processes studied in chemical engineering, the following 

situation arises: 

A fluid carrying dissolved substances (or particles, or ions) flows through a fixed bed, and the 

material being carried is partially absorbed on the fixed solid material in the bed. Let the fluid 

flow be idealized to have a constant velocity V . Let ρf be the density of the material carried in 

the fluid, and ρs be the density deposited in the solid. The amount of material being deposited 
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can be related to the amount of material in the fluid by the exchange equation, which in its 

simplest form can be taken to be: 

(ρs)t = k1 (A − ρs) ρf − k2 ρs (B − ρf ) , (3.1) 

where k1, k2, A, and B are constants. The first term in this equation represents the deposition 

from the fluid to the solid, at a rate proportional to the amount in the fluid — but limited by the 

amount already in the solid, up to a capacity A. The second term represents the reverse transfer 

from the solid to the fluid, at a rate proportional to the amount in the solid — but limited by the 

amount already in the fluid, up to a capacity B. 

At equilibrium (ρs)t = 0, and ρs is a definite function of ρf . In slowly varying conditions, which 

will arise when the reaction rates k1 and k2 are “large”, we may still take the approximation in 

which (ρs)t = 0 as far as equation (3.1) is concerned — i.e.: quasi-equilibrium. 

Remark 3.1 As usual, the idea here is that, compared with the other time scales in the problem, 

the reactions leading to equation (3.1) are very fast. Thus, any deviations from the equality relating 

ρs and ρf 

k1(A − ρs)ρf − k2ρs(B − ρf ) = 0 , (3.2) 

that occurs when (ρs)t = 0 in (3.1), are very rapidly damped out (so that, at any time, we can 

assume that the equality above is satisfied.) 

Your task: Assuming the quasi-equilibrium approximation, and using the con

servation of the material being exchanged, derive an equation for ρs = ρs(x, t). 

Hint 3.1 The total density of the material is ρ = ρs + ρf , while the flow rate follows from knowl

edge of ρf and the (constant) fluid velocity V . 

3.2 Statement: Dispersive Waves and Modulations. 

Consider the following linear partial differential equations for the scalar function u = u(x, t): 

ut + c ux + d uxxx = 0, (3.3) 

utt − uxx + a u = 0, (3.4) 

i ut + b u + g uxx = 0, (3.5) 
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where c, d, a, b, and g are constants, and we will assume that the equations have been nondimen

sionalized.4 It should be clear that, in all three cases, 

u = Aei (k x − ω t), where ω = Ω(k) , (3.6) 

is a solution of the equations, for any constants A and k, provided that we take 

M1. For equation (3.3): Ω(k) = c k − d k3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Verify that this is true. 

M2. For equation (3.4): Ω(k) = 
√
a + k2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Verify that this is true. 

M3. For equation (3.5): Ω(k) = −b + g k2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Verify that this is true. 

Solutions such as that in (3.6) represent monochromatic traveling waves, with amplitude A , wave | |
number k, and angular frequency ω. Note that in all these cases, Ω is NOT a linear function 

of k. Thus we say that the equations are dispersive and call Ω the dispersion function. 

Remark 3.2 For a dispersive system waves with different wavelengths propagate at different 

speeds. Thus a localized wave packet, made up of many waves of different wavelengths, will disperse 

in time — as the waves cease to add up in the proper phases to guarantee a localized wave-packet. 

Your task: consider a dispersive waves system, that is: a system of equations accepting monochro

matic traveling waves as solutions, provided that their wave number k and angular frequency ω are 

related by a dispersion relation 

ω = Ω(k) . (3.7) 

Consider now a slowly varying, nearly monochromatic solution of the system. To be more precise: 

consider a solution such that at each point in space–time one can associate a local wave number 

k = k(x, t) and a local angular frequency ω = ω(x, t). In particular, both k and ω vary slowly 

in space and time, so that they change very little over a few wavelengths or a few wave periods. 

Note though that they may change considerably over many wavelengths or wave periods! Then 

Assuming conservation of wave crests, 

derive equations governing k and ω. 

These equations are called the Wave Modulation Equations. 

4These equations arise in many applications, but we will not be concerned with these applications here. 



Rosales 18.306 Problem List. 15 

Remark 3.3 Notice that the assumption that k and ω vary slowly is fundamental in making 

sense of the notion of a locally monochromatic wave. To even define a wave number or an angular 

frequency, the wave must look approximately monochromatic over several wavelengths and periods. 

Remark 3.4 Why is it reasonable to assume that the wave crests are conserved? The idea 

behind this is that, for a wave crest to disappear (or for a new wave crest to appear), something 

pretty drastic has to happen in the wave field. This is not compatible with the assumption of slow 

variation. It does not mean that it cannot happen, just that it will happen in circumstances where the 

assumption of slow variation is invalid. There are some pretty interesting open research problems 

in pattern formation that are related to this point. 

Hint 3.2 It should be clear that one of the equations is ω = Ω(k), since the solution behaves 

locally like a monochromatic wave. For the second equation, express the density of wave crests (and 

its flux) in terms of k and ω. Then write the equation for the conservation of wave crests using 

these quantities. 

3.3 Statement: Channel Flow Rate Function. 

It was shown in the lectures that for a river (or a man-made channel) in the plains, under conditions 

that are not changing too rapidly (quasi-equilibrium), the following equation should apply 

At + qx = 0, (3.8) 

where A = A(x, t) is the cross-sectional filled area of the river bed, x measures length along the 

river, and q = Q(A) is a function giving the flow rate at any point.


That the flow rate q should be a function of A only5 follows from the assumption of quasi-equilibrium.


Then q is determined by a local balance between the friction forces and the force of gravity down


the river bed.


Assume now a man-made channel, with uniform triangular cross-section and a uniform (small) 

downward slope, characterized by an angle θ. Assume also that the frictional forces are proportional 

to the product of the flow velocity u down the channel, and the wetted perimeter Pw of the channel 

bed Ff = Cf uPw. Derive the form that the flow function Q should have. 

5Possibly also x — i.e. q = Q(x, A) — to account for non-uniformities along the river. 



Rosales 18.306 Problem List. 16 

Hints: (1) Q = uA, where u is determined by the balance of the frictional forces and gravity. (2) 

The wetted perimeter Pw is proportional to some power of A. 

3.4 Statement: Road capacity. 

Consider a road with traffic density obeying the Traffic Flow equation 

ρt + qx = 0, (3.9) 

for some flow function q = Q(ρ). How would you determine/measure the road capacity qm = max(Q) 

from traffic flow observations on the road? 

Hint: Look at the solution for the red light turns green problem. 

3.5 Statement: Initial Values for a Kinematic Wave (problem 01). 

Consider the Kinematic Wave equation 

1 2 ut + qx = 0, where q = u , (3.10) 
2 

and u is the density for some conserved quantity. Using the method of characteristics, the Rankine-

Hugoniot jump conditions, and the entropy conditions, find the solutions (for all t > 0) to the 

following initial value problems: 

1st Initial Value Problem: 
⎧ 
⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎩ 

1 for < x−∞ ≤ −1, 

u(x, 0) = for −1 ≤ x 0, (3.11)
−x
 ≤


0 for 0 ≤ x < ∞.


2nd Initial Value Problem:

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎩ 

0 for < x−∞ ≤ −1, 

1 + x for x 0,−1 ≤ ≤
u(x, 0)
 =
 (3.12)


1− x for 0 ≤ x ≤ 1, 

0 for 1 ≤ x < ∞. 
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3.6 Statement: Initial Values for a Kinematic Wave (problem 02). 

(Here we explore the issue of dissipation at shocks). In Initial Values for a Kinematic Wave (problem 

01) we considered the following question: Solve the Kinematic Wave equation (for the conserved 

quantity u) 
� 

1 2 =
 0, (3.13)
uut + 
2 x 

using the initial values


u(x, 0)
 =


⎧ 
⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎩ 

0 for < x−∞ ≤ −1, 

1 + x for x 0,−1 ≤ ≤ 
(3.14)


1− x for 0 ≤ x ≤ 1, 

0 for 1 ≤ x < ∞, 

and introducing shocks in the solution (whenever needed to eliminate multiple values due to crossing 

of the characteristics). Let the solution to this particular problem be u = U(x, t) — which is 

given explicitly in the answer to the Initial Values for a Kinematic Wave (problem 01). Then, DO 

THE FOLLOWING: 
� 

∞ 

1. VERIFY directly (using the explicit form for U) that A = U(x, t) dx = 1 for all times, so 
−∞ 

that the total amount of u is conserved, as it should. 
� 

∞ 1 
2. VERIFY directly (using the explicit form for U) that the “energy” E = U2(x, t) dx 

−∞ 2 
is constant for 0 ≤ t ≤ 1, and decreases for t > 1 — time derivative strictly less than zero. 

Since t = 1 is the time when a shock in the solution forms, this provides an explicit example 

showing that shocks dissipate “energy” — even though (3.13) formally has no dissipation! 

The purpose of this problem is to understand a little of why and how this happens. 

3. Consider an arbitrary solution u to equation (3.13). SHOW THAT, as long as u has no 

shocks,6 u also satisfies the equation 

� 
1 

� 
12 3 = 0. (3.15) +
u
 u


2 t 3 x 

� 
∞ 1 2(x, t) dx will be a constant — this Thus, if u → 0 as |x| → ∞, the “energy” E = 

−∞ 2 
u 

shows that the first part of the result in item 2 is generic. 

6Thus u has derivatives, and satisfies the equation in the usual sense. 
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4. At a shock x = xs(t) for a solution u to equation (3.13), equation (3.15) does not hold. In 

fact, from the rules governing weak derivatives, it can be shown that7 

� 
1 2 

� � 
1 3 

� 
�

� 
dxs 1 2 1 3 

� 

2 
u 

t 
+

3 x 
− 
dt 2 

u +
3 
u δ(x − xs(t)), (3.16) u	 = 

shocks 

where δ( ) is the Dirac delta function, and the brackets [ ] denote the jump in the enclosed ·	 ·
function across the shock — specifically: value immediately ahead of the shock minus value 

immediately behind. Thus, SHOW THAT: 

� 
1 

� � 
1 

� 
2 3 

� 1 3 u + u = [u] δ(x − xs(t)).	 (3.17) 
2 t 3 x 12 

shocks 

Since [u] < 0 at shocks for (3.13) — entropy condition (SHOW THIS)— the right hand side in 

(3.17) is negative, so that energy is dissipated. INTEGRATE this last equation from x = −∞ 

to x = ∞, assuming that u vanishes as |x| → ∞, and OBTAIN AN EQUATION for the time 

derivative of the energy E. VERIFY that E, as calculated in item 2, satisfies this equation. 

Note 1: Assume that (for each shock) along the curve x = xs(t) the function u has a discon

tinuity such that u, ut, and ux exist and are continuous on each side of the curve, and have 

left and right limits as the curve is approached. Furthermore, assume that dxs/dt exists. 

Note 2: Remember that the discontinuity across a shock must satisfy the Rankine-Hugoniot 

jump condition, as well as the entropy condition. 

5. How is it that the solutions to (3.13) end up with dissipation at shocks, when the equation 

itself has no explicit dissipation parameter? The reason has to do with the fact that shocks 

arise in a singular limit as the dissipation parameter vanishes, as you will be asked to show here. 

As explained in the lectures, adding shocks to the solutions of (3.13) — in order to resolve 

multiple values issues, as well as infinities in the derivatives — is not a mathematical step, 

but a (physical) modeling issue: the equation plus shock conditions includes further physical 

assumptions than the original model without them. Specifically: there is a diffusion-like process 

that “fights” (and stops) the steepening caused by the nonlinearity when the derivatives 

become large enough, stabilizing a transition in the solution from one value to another over 

7You will be asked to show this in another problem. 
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a very thin layer. This layer is then modeled as being infinitely thin, with the solution being 

discontinuous across it: a shock. 

For example, in the case of equation (3.13), a more complete model would include a small 

“viscosity” coefficient 0 < ν � 1, with the equation modified to 

� 
1 

� 

u 2 = ν uxx. (3.18) ut + 
2 x 

Then the solutions of (3.13) are obtained from the solutions of (3.18) in the limit ν 0. As → 

we saw in the lectures, for equations like this, the shocks can be modeled as traveling waves 
� 
x − s t � 

connecting two values of u over a layer of width O(ν) — i.e.: u = F , where s is 
ν 

the shock velocity and F is the shock structure function. The important conclusion from this 

that we need here is that: 

Each shock layer has an x-width of size O(ν). 
� 

(3.19) 
In the shock layer: u = O(1), ux = O(ν−1), ut = O(ν−1), etc. 

Consider now a solution of (3.18) that vanishes (fast enough) as |x| → ∞ and SHOW THAT 

dE d � 
∞ 1 

u 2(x, t) dx = −ν 
� 

∞ 

u 2 x(x, t) dx. (3.20) = 
dt dt −∞ 2 −∞ 

dE 
Hence E is decreasing. Furthermore8 ARGUE that, as ν 0, has a nonzero negative → 

dt 
dE 

value if the solution has shocks — this limiting value of is, of course, the one that you 
dt 

were asked to derive in item 4. 

The results above illustrate how it is that the solutions to equation (3.13) dissipate energy, 

even though the dissipation parameter — the viscosity ν in (3.18) — vanishes. What happens 

is that (for small, but finite ν) the amount of dissipation produced by each shock is (basically) 

independent of the value of ν. This follows because the amount of dissipation is not just 

proportional to ν, but is also a function of the gradients involved — and the nonlinearity in 

the equation pushes these gradients up till they have size O(ν−1). 

8Hint: use (3.19). 
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3.7 Statement: Infinite conservation laws for kinematic waves. 

Consider the (kinematic wave) equation for some conserved scalar density ρ = ρ(x, t) in one dimen

sion 

ρt + qx = 0, where q = Q(ρ) (3.21) 

is the flow function — which we assume is sufficiently nice (say, it has a continuous first derivative). 

SHOW THAT: if f = f(ρ) is some arbitrary (sufficiently nice) function, then there exists a function 

g = g(ρ) such that for any classical9 solution of (3.21), we have 

ft + gx = 0. (3.22) 

In other words, (formally) f behaves as a “conserved” quantity, with flow function g. In particular: 

d � b 

dt 
fdx = g 

x=a 
− g 

x=b 
(3.23) 

a 

expresses the “conservation” of f for any interval a < x < b. 

EXTREMELY IMPORTANT: it is crucial that the solution ρ have derivatives in the classical 

sense. When shocks are present, this result is false! As you will be asked to show in another 

problem, when shocks are present (3.22) has to be replaced by 

ft + gx = cs 

shocks 

δ(x − xs(t)), (3.24) 

where x = xs(t) are the shock positions, δ is the Dirac delta function, and the cs = cs(t) are some 

coefficients that are generally not zero! Thus the shocks act as sources (or sinks) for f . 

3.8 Statement: Traffic Flow problem 01. 

Determine the traffic density on a semi–infinity (x > 0) highway, for which the density at the 

entrance is
 ⎧ 
⎪⎨ 

⎪⎩ 

ρ1 for 0 < t < τ , 
ρ(0, t) = (3.25)


ρ0 for τ < t, 

where τ > 0 is constant, and the initial density is uniform along the highway — assume that 

ρ(x, 0) = ρ0, for x > 0. Furthermore, assume that ρ1 is lighter traffic than ρ0, and that both are 

light traffic; in fact assume that u(ρ) = umax (1− ρ/ρmax) and that ρ1 < ρ0 < ρmax/2. Sketch the 

density at various values of time. 

9That is: no shocks, so no generalized derivatives are involved. 
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3.9 Statement: Traffic Flow problem 02. 

In the simplest formulation of a traffic flow model, one starts with a car density ρ(x, t) and a car 

flow rate q = ρ u, where u = u(x, t) is the car velocity. Conservation of cars then yields the equation 

ρt + qx = 0. 

The model is then closed by taking a quasi-equilibrium approximation, in which u is given as a 

function of ρ. Namely: u = U(ρ), for some (decreasing) function U . This is motivated by the fact 

that (at steady state) people drive at a velocity that is directly correlated to how close the nearby 

cars are (i.e.: to ρ). Thus, if the changes in ρ are not too fast (along car paths), the drivers have 

plenty of time (and space) to adjust their velocity to the desired value given by the local density ρ 

— hence then u = U(ρ) is a good approximation. 

(a) A more sophisticated theory of traffic flow assumes that the drivers do not move at a velocity 

determined (instantaneously) by the density. Instead, drivers accelerate in a manner so as to 

approach the desired velocity-density curve. 

(a1) Formulate a model incorporating the simplest version of this idea. 

(a2) What type of initial conditions are necessary to solve the new model? 

Hint: Assume that the drivers adjust their velocity to their local conditions, following a simple 

law in which they accelerate at a rate proportional to the difference between their actual velocity 

and the desired one — with an associated time constant τ > 0. You should obtain, in this way, 

a model involving two equations, characterizing the evolution of ρ = ρ(x, t) and u = ρ(x, t). 

(b) How good is your new model? Are there any hidden flaws in it that should be fixed? In order 

to ascertain the answer to these questions perform a (linearized) stability analysis of the 

steady state, equilibrium, solutions to your new model. Namely: 

(b1) Consider solutions of the form ρ = ρ0 + δ ρ̃(x, t) and u = u0 + δ ũ(x, t), with ρ0 

and u0 constants, and 0 < δ � 1 infinitesimal. Derive equations for ρ̃ and ũ. 

(b2) Find the normal mode solutions to the equations derived in item b1. That is, 

look for solutions of the form ρ̃ = Re(a1 e 
i k x+σ t) and ũ = Re(a2 e 

i k x+σ t), where a1, a2, 

k and σ are constants, with k real. Then find a formula characterizing σ as a function 

of the wave number −∞ < k < ∞. For every k, there are two possible choices for σ. 
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(b3) Show that the equilibrium solutions ρ = ρ0 = const. and u = u0 = const. are 

unstable to infinitesimal perturbations of any wave-length. Namely, show that for every 

k, there is a choice of the σ in item b2 — say σ = σ2 — with Re(σ2) > 0. 

(b4) Show that the growth rate for the unstable modes in item b3 can be arbitrarily 

large. In fact, show that Re(σ2) = O( |k|) for |k| � 1. This shows that the (linear) 

equations for ρ̃ and ũ derived in item b1 are ill-posed! The equilibrium solutions are not 

just unstable to infinitesimal perturbations of any wavelength, they are catastrophically 

and violently unstable ←− spells DISASTER for the model in item a. 

Note: one way in which this could avoid being a disaster is if, somehow, the nonlinearities 

in the problem were to (eventually) intervene, clipping the growth and stabilizing the 

solution to some non-equilibrium, but “nice and smooth” solution of the equations. In 

the next item we show that this is not possible. 

(c) Optional/challenge. You can safely skip to item d if you cannot (or do not want to) do this. 

The purpose here it to refine the results in item b, and show that it is not only the equilibrium 

solutions of the model in item a that are violently unstable. You will be asked to show that: 

Any and all smooth solutions — ρ = ρ0(x, t) and u = u0(x, t) — to the model in item a are 

violently unstable to high frequency perturbations, with growth rates that go to infinity as the 

wavelength vanishes. Proceed as follows: 

(c1) Look for solutions of the form ρ = ρ0(x, t) + δ ρ̃(x, t) and u = u0(x, t) + δ ũ(x, t), 

where 0 < δ � 1 is infinitesimal and (ρ0, u0) is a smooth solution to your new model in 

item a. Derive equations for ρ̃ and ũ. In the next item you will be asked to show that 

these equations are ill-posed. 

(c2) The equations derived in item b1 are linear and constant coefficients — hence a 

normal mode analysis is easy to perform using exponentials. The equations derived in 

item c1, on the other hand, are linear — but with variable coefficients. Doing a complete 

normal mode study analytically is not possible. On the other hand, the interest here 

is only with computing the growth rate for high frequency perturbations of the smooth 

solution (ρ0, u0). Hence, a W.K.B.J. type of approximation is possible. Thus, seek 
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solutions for the (linear) equations derived in item c1, of the form: 

ρ̃ = Re 
� 

ρ(x, t, T ; �) exp 
� 
i 
� 
θ(x, t) 

�� 

, 

ũ = Re 
� 

u(x, t, T ; �) exp 
� 
i 
� 
θ(x, t) 

�� 

, 

⎫ 
⎪⎪⎪⎬ 

⎪⎪⎪⎭ 

where 0 < � � 1, T = 
t √
�
, (3.26) 

� is a measure of the wavelength, and both ρ and u have expansions in powers of 
√
�. 

Motivation: In any sufficiently small neighborhood in space time, the variations in the co

efficients of the equations derived in item c1 can be neglected. A high frequency wave will 

thus see the equations as “constant coefficients” in each small region of space-time, and so 

should behave (locally) like a plane wave. This is what the form in (3.26) is designed to 

provide, since near any fixed (x0, t0) it yields 

� 
i �� 

ρ̃ Re ρ(x0, t0, T ; �) exp ≈ 
�
θ0 + i k0 (x − x0)− i ω0 (t − t0) , 

� 
i �� 

� 
ũ Re u(x0, t0, T ; �) exp θ0 + i k0 (x − x0)− i ω0 (t − t0) ,≈ 

where k = θx, ω = −θt, and the subscript zero indicates evaluation at (x, t) = (x0, t0). 

Question: why is it necessary to add a dependence on T/
√
� above in (3.26)? Why 

do we need to introduce square roots of � into the solution? 

(c3) You can further confirm the inability of the nonlinear terms (in the new model 

derived in item a) to fix the arbitrarily large growth rates that occur with high frequency 

perturbations (as the wavelength becomes smaller) to smooth solutions, by asking (and 

answering) the question: At what amplitude do nonlinear effects become important in the 

evolution of a high frequency solution, such as the ones modeled by the W.K.B.J. type 

ansatz (3.26) in the linear regime? Answer the question, and show that: the nonlinear 

terms do not become important as long as the amplitude of the perturbations remains small. 

This means that perturbations of arbitrarily large growth rates for arbitrarily short 

wavelengths can grow to finite amplitude without being impaired by the nonlinear terms. 

This spells disaster for the model in item a, which this shows to be ill-posed. 

Hint: To answer the question you must move away both from the δ infinitesimal as

sumption, and from the W.K.B.J. use of exponentials to describe solutions. Thus use an 
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ansatz of the form 

ρ = ρ0 + δ ρ̃(Ψ, T , x, t ; �, δ),


u = u0 + 
√
� δ ũ(Ψ, T , x, t ; �, δ), 

(3.27)


1 
where (1) Ψ = θ(x, t) — with θ the same as in (3.26). Further, let k = θx, as before. 

(2) 0 < δ, � � 1 — neither being infinitesimal. Here � is a measure of the 

wavelength and δ is a measure of the nonlinearity. 

(3) ρ̃ and ũ have appropriate expansions in powers of � and δ, starting at O(1). 

(4) u0 = u0(x, t) and ρ0 = ρ0(x, t) are a smooth solution to the model in item a. 

Then show that the nonlinearities are never important at leading order, as long as they 

are small (i.e.: 0 < δ � 1). 

Note: the reason why the perturbation to u0 in (3.27) has to be scaled by an extra 

smallness factor 
√
� should become clear to you from your answer to item c2. 

(d) The model of item (a) essentially introduces a delay (due to the time a driver takes to 

accelerate) in a driver’s response to the observed density. Unless the drivers look far enough 

ahead to compensate for this response time, this delay process leads to an extremely bad 

instability to high frequency perturbations, as the cars systematically accelerate towards a 

velocity that is the wrong one when achieved. 

Implement the simplest modification of the model in item (a), incorporating the fact 

that the drivers take preventive action to account for the delay. 

Hint. A simple way to put it is that: the drivers accelerate towards a velocity that matches 

the conditions they expect to find once the acceleration process ends. In other words, their 

target velocity is not utarget = U(ρ), but some corrected velocity, where the correction arises 

from what they see the conditions (density) ahead of them are. Think of a simple way to 

write utarget = U(ρ)+ correction, where the correction involves only ρ, ρx, and a parameter 

ν > 0 with the dimensions of a diffusion (length square over time). 

(e) Repeat the analysis in item b, for the corrected model in item d. Show that, if ν is 

taken large enough, the uniform equilibrium solutions can be made stable. Incorporating 

the “look-ahead” behavior by the driver eliminates the bad behavior, and a well behaved 

mathematical model is thus obtained. 

⎫ 
⎪⎬ 

⎪⎭ 

� 
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3.10 Statement: Envelopes and cusps. 

Consider the problem 

ct + c cx = 0, where c(x, 0) = C(x), for −∞ < x < ∞. (3.28) 

e1. Write the characteristic curves for this problem, each one parameterized by time, and 

labeled by the value of x = s at time t = 0. That is, write formulas for the characteristics of 

the form x = X(s, t). 

e2. Write the equation for the envelope of the characteristics, and express the envelope in 

parametric form x = Xe(s) and t = Te(s). 

e3. Assume that C has an inflection point at x = 0. In fact, assume that 

C(0) = 0, C �(0) = −a < 0, C � �(0) = 0, and C � � �(0) = 2 a b > 0, (3.29) 

where the primes denote derivatives. 

Let xc = Xe(0) and tc = Te(0). Show that Te has a local minimum at s = 0, and that the


envelope has a cusp at (xc, tc).


HINT: Expand the equations for s small.


e4. Replace (3.28) by 

ct + c cx = −c, where c(x, 0) = C(x), for −∞ < x < ∞. (3.30) 

Repeat steps e1 and e2 for this problem. Question: what condition is needed on C � so 

that the characteristics of (3.30) actually HAVE an envelope in the upper half space-time 

plane? That is, so that Te(s) > 0 somewhere. 

4 Hamilton Jacobi and Eikonal Problems. 

4.1 Statement: Eikonal equation (problem 01). 

Consider the Eikonal equation (for the wave equation in 2-D) in a context where the wave speed is 

a constant (homogeneous media), so that we can set (upon non-dimensionalization) c = 1. Then 

φ2 + φ2 = 1. (4.1) x y 
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Consider now the situation where the wave-front φ = 0 is a parabola. Specifically: 

φ = 0 on y = x 2 ,	 (4.2) 

with propagation direction towards y increasing. For this problem, this is what you should do: 

1. Find the family of all the rays (characteristics) for t > 0. The easiest way is to describe it is 

parametrically: x = x(s, t) and y = y(s, t), where x(s, 0) = s, y(s, 0) = s 2, and t is time of 

travel along the ray (for the wave-fronts) starting from the initial wave-front — i.e.: φ = t. 

2. Find the caustic. The caustic is the envelope of the family of rays = the locus of the inter

sections of infinitely close neighbors in the family of rays10 = a curve such that each point 

in it belongs to one of the rays, and it is tangent to the ray there.11 In this case of constant 

wave speed, where the rays are straight lines, the caustic is also the locus of the centers of 

curvature of the wave-fronts (all the wave-fronts have the same set of centers of curvature). 

From the parametric description of the family of rays in item 1, you should be able to obtain 

the caustic parametrically in terms of s. However, you should also be able to find a very simple 

formula — of the form (y − ya)
α = const. (x − xa)

2 — for the caustic. Do so. 

3. Do a sketch of the wave-front φ = 0, and of the caustic. Indicate the region of the plane where 

the rays cross and give rise to multiple values in the solution to the equation. 

4. The earliest time at which a ray crossing occurs corresponds to the singular point in the caustic 

(the arête). Find the position of the arête in space, the ray, and the time (or wave-front, as 

φ = t) it correspond to. Let these parameters be xa, ya, sa, and ta. Explicitly show that ta is 

the earliest time at which a crossing of rays occurs. 

5. Add to the sketch in item 3 the wave-front φ = ta. This wave-front is singular at the arête; 

describe the nature of this singularity. In particular, show that the wave-front satisfies (at 

leading order) a formula of the form (y − ya) ∼ const. (x − xa)
µ near the arête. 

10(x∗, y∗) ∈ caustic	 x∗ = x(s, t) = x(s + ds, t + dt) and y∗ = y(s, t) = y(s + ds, t + dt), for some s and t.⇐⇒ 
11(x∗, y∗) ∈ caustic ⇐⇒	 for some s and t: x∗ = x(s, t), y∗ = y(s, t), and (xt(s, t), yt(s, t)) is tangent to the 

caustic at (x∗, y∗). 
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4.2 Statement: Eikonal equation (problem 02). 

Consider the Eikonal equation (for the wave equation in 2-D) in the context where the wave speed 

is not a constant (non-homogeneous media). In particular, consider the following situation 

c 2 (φ2 
x + φ2 

y) = 1, (4.3) 

where c = c1 > 0 for y > 0, and c = c2 > 0 for y < 0, with c1 = c2. Of course, in a situation like 

this, we must worry about what is the meaning of the equation for y = 0. From the derivation 

in the lectures, where we saw that φ is a phase, it is easy to see that what we want to require in 

that φ be continuous across y = 0, with the equation satisfied on each side. On the other hand, the 

gradient of φ will, most definitely, not be continuous. In fact, investigating what happens with �φ 

across y = 0 is the purpose of this problem. 

Assume that �φ is continuous on each side of y = 0, with continuous limits on each side as y 0. → 

Let � +φ = lim −φ = lim Find a relationship between � +φ and � −φ. 
y→0, y>0

�φ and � 
y→0, y<0

�φ.


d�r 2
Note: since �φ is the direction of the rays — given by = c �φ — the relationship you find 
dt 

should be equivalent to Snell’s law. Show that this is, indeed, the case. 

5 HyperbolicEquations. 

5.1 Statement: The importance of being hyperbolic. 

Consider initial value problems of the form 

�ut + A �ux = B �u, with �u = �u0(x), (5.1) 

where A and B are N × N square, constant, real matrices, and �u = �u(x, t) is a column N vector 

real valued function. The purpose of this exercise is to investigate general conditions under which 

this problem is either well posed or ill posed. 

(a) Show that if A has an eigenvalue λ such that Im(λ) =� 0, then (5.1) is ill posed. 

Hint a1: Look for normal mode solutions of the form �v e i k x+σ t, where �v is a (constant) vector, 

−∞ < k < ∞, and σ is some constant. Show that solutions of this type can be found with 

arbitrarily large growth rates. Specifically, show that Re(σ)→∞ as |k| → ∞. 

Hint a2: If C is close to A, then the eigenvalues of C are close to the eigenvalues of A. 
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(b) Show that if (5.1) is strictly hyperbolic,12 then the growth rate for the normal mode solutions 

is bounded, no matter what the choice of B is. This can be parlayed into a proof that (5.1) 

is well posed, by showing that the normal mode solutions form a complete set (you are not 

being asked to do this). 

Hint b1: Look for normal mode solutions of the form �v e i k x+σ t, where �v is a (constant) vector, 

−∞ < k < ∞, and σ is some constant. Express σ as the eigenvalue in an appropriate eigenvalue 

problem. From this you will be able to show that σ is a continuous function of k — see Hint 

a2. Thus, on any bounded set of k’s, Re(σ) is bounded. Investigate now the behavior of σ as 

|k| → ∞, and show that (in this limit) Re(σ) remains bounded. 

Hint b2: In this case the eigenvalues and eigenvectors of the matrix A + � C, where 0 < � � 1 

and C is some constant matrix, can be calculated using a (convergent) power series in � expansion. 

When the eigenvalues of A are real, but have multiplicities greater than one, the analysis becomes a 

little more complicated. To keep the analysis simple, assume that N = 2 for parts c and d below. 

(c) Show that if (5.1) is hyperbolic, but not strictly hyperbolic,13 then it is well posed. This is 

true for any N , but you are being asked to show it only for N = 2. 

Hint c1: Show that in this case A is a multiple of the identity matrix. Then reduce the problem 

to a system of o.d.e. 

(d) Show that if A has real eigenvalues, but it is not diagonalizable, then B can be selected so 

that (5.1) is ill posed. Note that, in this case (5.1) is not hyperbolic. 

Hint d1: Take
 ⎞⎛ 

λ 1

A =
 ⎟

⎠
⎜
⎝ (5.2)


0 λ


where λ is some constant, and investigate the normal mode solutions. Show that, as long as 

B2 1 =� 0, there are normal modes with a growth rate that goes to infinity as |k| → ∞. 

12That is: A is real diagonalizable, and the eigenvalues are all distinct. 
13That is, A is real diagonalizable, but the eigenvalues are not distinct. 
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6 Point Sources and Green functions. 

6.1 Statement: Green’s functions for the wave equation. 

In this problem we consider the initial value problem for the wave equation — with constant wave 

speed c — in Rd, and find explicit integral formulas for its solution. 

Without loss of generality we can assume c = 1. The problem is then 

utt = Δu, for −∞ < xj < ∞ (1 ≤ j ≤ d) and t > 0, (6.1) 

where u(�x, 0) = u0(�x), ut(�x, 0) = v0(�x), �x = (x1, x2, . . . xd) ∈ Rd, Δ = 
� 

∂2 , and u = u(�x, t) is a xj

real valued (scalar) function to be found. To solve this problem, we: (1-st) Seek (explicit) special 

solutions (Green’s functions) to the wave equation — u = G1(�x, t) and u = G2(�x, t) — satisfying 

G1(�x, 0) = δ(�x) and ∂tG1(�x, 0) = 0, (6.2) 

G2(�x, 0) = 0 and ∂tG2(�x, 0) = δ(�x), (6.3) 

where δ(�x) = δ(x1) δ(x2) . . . δ(xd) is the Dirac delta function in d dimensions. (2-nd) Use these 

solutions to produce integral formulas for the solution of (6.1). 

Remark 6.1 Equation (6.1) is linear hyperbolic, with a single propagation speed c = 1 in all 

directions. Since the initial conditions involve non-trivial data at �x = 0 only, we expect that: 

6.1-a. G1 and G2 vanish identically for r > t — where r = 
� 

xj 
2 .


6.1-b. G1 and G2 are singular for r = t only. This means that the only place where G1 or G2 may


behave in a non-classical way (see warning below) is at r = t. Everywhere else G1 and G2 should


satisfy the equation in the classical (strong) sense.


6.1-c. Warning: Neither G1 nor G2 is a function in the classical sense. Both are “generalized”


functions, and satisfy the equation in the weak sense only. Keep this in mind when doing the


problem: any equation you write must make sense.14 See remarks 6.2 and 6.3 for some helpful (I


hope) facts.


Below are the TASKS FOR THIS PROBLEM: 

14This does not mean that you are expected to provide a rigorous (in the strict mathematical sense) answer. On 

the other hand, writing equations that have no meaning, or making false arguments is not allowed. 
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The stuff below “guides” you through the construction of the solution to 

the wave equation initial value problem in any number of dimensions. 

It does not follow the usual path that you may find in books. I want you 

to do it in the way requested below, for at least three reasons: 

(1) For practice with weak solutions and generalized functions. 

(2) Approach less tied up to the peculiar properties of the equation. 

(3) No point in assigning something that you can find in any book. 

� t 
01. Show that, given G1, one can take G2(�x, t) = G1(�x, s) ds. Vice versa, given G2, one can 

0 

take G1 = ∂tG2. Thus, once either of G1 or G2 is known, the other one follows easily. 

02. Argue that G1 and G2 should have the form G1 = t−d U(z) and G2 = t−d+1 V (z), for some 

functions U and V , where z = r/t and r = 
� 

x2 
j . Then, from item 01 it follows that 

d � 1 

U = (1− d)V − z V � — where � = , and V = U(z/s) s −d ds. 
dz 0 

Hint 02: Show that the problem defining these functions is invariant under rotations and 

appropriate scalings of the variables. You will need some of the results in remark 6.2 here. 

03. (A) Use (6.1), 6.1-a, and G1 = t−d U(z) to obtain a FIRST order linear O.D.E. for U . 

Hint 03a: Do not expand the expression for the Laplacian of a rotationally symmetric function 

in your calculations — namely, use: Δ = r 1−d ∂r r 
d−1 ∂r . You should be able to write a 

somewhat similar formula for ∂t 
2G1. Using these you will be able to integrate once the second 

order O.D.E. for U that direct substitution produces. Warning: see remark 6.3. 

(B) Show that odd dimensions are special. If d = 2m + 1, the equation for U in part A 

can be integrated once more, to arrive at what is (essentially) an algebraic equation for U . 

Hint 03b: The O.D.E. for U obtained in part A is first order. Hence, it always has an 

integrating factor. However, when d is even, the integrating factor has a singularity at the 

wrong place (z = 1), that makes multiplication of U by it have a not-too-clear meaning. For 

d odd, the integrating factor is smooth, and multiplication by it does not create ambiguities — 

on the other hand, when interpreting the equation that results upon integration, be mindful of 

example 6.3-a in remark 6.3! 
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(C) Show that if S = S(z) is a solution of the equation for U in part A for d = d1 space 
1 

dimensions, then S � is a solution of the corresponding equation for d = d1 + 2. 

04. Find the form that the initial conditions (6.2) take in terms of U . For the values of the 

constants that will appear in these conditions, you will need to do item 09. 

Hint 04: Let φ = φ(�x) be an “arbitrary” test function, then (6.2) says that 

φ(0) = lim G1(�x, t)φ(�x) dx1 . . . dxd and 0 = lim ∂tG1(�x, t)φ(�x) dx1 . . . dxd. (6.4) 
t→0 t→0 

Furthermore, since G1 = G1(r, t), it is enough to consider test functions of the form φ = φ(r). 

However, note that φ must be smooth as a function in Rd, thus the odd derivatives of φ must 

vanish at the origin: 0 = φ�(0) = φ���(0) = . . . 

Note that, because U vanishes for z > 1, you should be able to show that the second condition 

in (6.4) — the one involving ∂tG1 — is always satisfied. Showing this will simplify (a 

little) parts 05-07 below. However, you are not required to show this. If, on the other hand, 

you want a (tinny) challenge, here is a tip: Generalized functions, such as U , are defined as 

continuous, linear functionals15 L on the set of all test functions. Continuity means the usual: 

lim = L(Φ), where (for test functions) φ Φ means (uniform) convergence of not just the 
φ→Φ
L(φ) → 

function, but of each of the derivatives as well. 

05. For d = 1 find U (thus G1), and then G2 (using the results of item 01). Use then G1 and 

G2 to write an integral formula for the general solution to the initial value problem for 

the wave equation in (6.1), with u(x, 0) = u0(x) and ut(x, 0) = v0(x). 

Hint 05: The wave equation (6.1) is linear (thus sums and integrals over solutions are 

solutions), invariant under translation, and one can write u0(x) = δ(x − s) u0(s) ds and 

v0(x) = δ(x − s) v0(s) ds. Further stuff that could prove useful (here and in parts 06-07): (i) 

Item 03-B; (ii) Remark 6.3; (iii) The formulas c δ(c x) = δ(x) and c 2 δ�(c x) = δ�(x) for any 

constant c > 0. 

06. Same as in 05, but for d = 3. 

Hint 06: When writing the formula for the general solution of the initial value problem, use 

the fact that G1 = ∂t G2. This will make them look a lot simpler. 

15The value of the functional is interpreted as the integral of the generalized function times the test function. 
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07. Same as in 05, but for d = 2. 

Hint 07a: This case is a little tricky! The equation for U that you obtained in item 03 could 

lead you to an expression for U that has no clear meaning! The problem is that for a function 

f = f(z) to make sense as a generalized function (and thus have derivatives in this sense, 

even if non-differentiable in the classical sense), it must be integrable — so that expressions 

such as f(z)φ(z) dz are defined for test functions. In order to get around this difficulty, write 

U(z) = S �(z) as a derivative (with S vanishing for z > 1). Then, without doing any “illegal” 

operations16 you should be able to integrate the equation (once) and obtain a 1-st order O.D.E. 

for S. The solution to this equation will also be singular, but integrable. 

The suggestion in the prior paragraph will not completely pull you out of dangerous waters! 

There is still one more trick: Because S has a singularity (where it is not differentiable in the 

classical sense), to show that it does (indeed) satisfy the O.D.E., you will have to interpret 

the meaning of the O.D.E. in terms of test functions. 

Hint 07b: Once you obtain U = U(z) you will have to translate it into a formula for G1 — 

which is a function of r and t. When you do this, translate derivatives with respect to z in 

derivatives with respect to t — not r. This will make writing the formulas for the general 

solution to the initial value problem a lot simpler — the same tip given in hint 06. 

08. Dimension reduction. 

Let G1 = G1(x1, x2 . . . xn, t) be the solution to the problem in (6.1 – 6.2) in d = n dimensions. 

Show that: 
� 

∞ 

G = G1(x1, x2 . . . xn, t) dxn (6.5) 
−∞ 

solves the problem in (6.1 – 6.2) in d = n − 1 dimensions. Use this to verify your answer in 

item 07 — i.e.: obtain the G1 for d = 2 from the G1 for d = 3. 

09. Prove the results in remark 6.2 below. 

Hint 09: The formulas involve equalities between generalized functions. Hence, integrate each 

side versus a test function, and show that they give the same answer. 

10. Do the calculations in remark 6.4 below.


Hint 10: Do the easy cases d = 2, 3 first, to see how it all works.


16For example: multiplication by something that is singular at z = 1 is illegal. 
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Remark 6.2 (A few useful properties of the Dirac delta function δ = δ(x) — x a real variable). 

6.2-a. Let g = g(x) be a continuous function, differentiable (with a non-zero derivative) near every 

point where it vanishes. Then 
� 1 

where the sum is over all xn such that g(xn) = 0. 

δ(g(x)) = |g�(xn)| 
δ(x − xn), 

Examples: |c| δ(c x) = δ(x) for any constant c =� 0, and δ(|x| − 1) = δ(x − 1) + δ(x + 1). 

6.2-b.	 Let f = f(x) have enough (continuous) derivatives at the origin. Then 

f(x) δ(n)(x) = f 0 δ(n)(x)− Bn f 1 δ(n−1)(x) +Bn f 2 δ(n−2)(x)− . . . + (−1)n fn δ(0)(x),0 1 0 2 0	 0 

n! 
where f0 

j is the value of the j-th derivative of f at x = 0, and Bj
n = are the combinatorial 

(n − j)! j! 
coefficients. 

Examples 

f(x) δ(0)(x) = f (0)(0) δ(0)(x) , 

f(x) δ(1)(x) = f (0)(0) δ(1)(x) − f (1)(0) δ(0)(x) , 

f(x) δ(2)(x) = f (0)(0) δ(2)(x) − 2 f (1)(0) δ(1)(x) + f (2)(0) δ(0)(x) , 

f(x) δ(3)(x) = f (0)(0) δ(3)(x) − 3 f (1)(0) δ(2)(x) + 3 f (2)(0) δ(1)(x) − f (3)(0) δ(0)(x). 

Remark 6.3 (Operating with generalized functions). 

The wave equation (6.1) is linear, so that no products of generalized functions (which can be mean

ingless) should appear in your calculations. On the other hand, linear combinations of U and its 

derivatives (all generalized functions), with coefficients that are functions (of z and t), will show up. 

In this situation, as long as the coefficients are not singular (or have zeros), you can operate with 

generalized functions just as if they were regular “nice” functions. However: beware of situations 

were the coefficients have singularities (or zeros) where the generalized functions fail to be “normal” 

functions (here for z = 1). The examples below illustrate the type of problems you may face: 

Example 6.3-a. This shows the type of problem that a zero causes: x 2 δ(x) = 0, but δ = 0 — where 

this means that δ(x)φ(x) dx does not vanish for all test functions.17 By contrast, if you knew 

that x 2 f(x) = 0 for some “classical” function f , you would be able to immediately conclude that 

f(x)φ(x) dx = 0 for any test function, so that (effectively) f = 0. In general:


from xM = 0 you can conclude that M is proportional to δ(x),


17In fact, it does not vanish for any test function such that φ(0) = 0. 
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from x 2 M = 0 you can conclude that M is a linear combination of δ(x) and δ�(x), 

from x 3 M = 0 you can conclude that M is a linear combination of δ(x), δ�(x), and δ��(x), 

and so on. 

Example 6.3-b. If M is a generalized function — singular at x = 0 — then x 2 M makes sense 

(because x 2 is smooth at 0), but x 1/3 M , or (log |x|)M or x 5/2 M may not — e.g. what is the 

meaning of x 1/3 δ�(x), or (log |x|) δ(x), or G = x 5/2 δ���(x)? On the other hand, x 2/3 δ(x) is perfectly 

OK — in fact x 2/3 δ(x) = 0. 

Example 6.3-c. (x 2/3 δ(x))� = 0, but you cannot use the product rule, since neither x 2/3 δ�(x), nor 

x −1/3 δ(x) have a clear meaning. 

Finally: If a generalized function G = G(x) is known to vanish everywhere but at some point18 

x0, then — for any test function φ = φ(x) — the value of G(x)φ(x) dx can only involve a linear 

combination of the values φ(x0), φ
�(x0), φ

��(x0), etc. In other words, G must be a linear combination 

of δ(x − x0), δ
�(x − x0), δ

��(x − x0), etc. 

Remark 6.4 Areas and volumes. 

Let Ad−1 be the “area” of the unit sphere Sd−1 in Rd . You can calculate Ad−1 as follows:


6.4-a. Let Vd be the “volume” of the unit ball Bd in Rd .


6.4-b. Decompose Bd into “slices” perpendicular to some fixed diameter. Each slice is a “ball” in


Rd−1 . Integrate to get an expression relating Vd to Vd−1, and then get Vd by induction.


6.4-c. Decompose Bd into concentric spherical shells. Integrate and get an expression relating Vd


to Ad−1.


Remark 6.5 Initial value problem for the wave equation is well posed. 

In this problem no assumption about the existence, or uniqueness, of the solutions to the wave 

equation is made. The objective is to construct special solutions G1 and G2 with the various properties 

stated earlier. However: once we have G1 and G2, never mind how we found them, the formulas in 

items 05, 06, and 07 (as well as those for d > 3) show existence by explicitly providing a solution to 

the initial value problem. This solution has all the expected properties: (i) Continuous dependence on 

the initial data; (ii) Propagation of singularities following the characteristics; (iii) Solution depends 

only on the initial data within its domain of dependence; etc. 

18For example, you know that f(x)G(x) = 0 for some smooth function f with a zero at x0. 
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Thus, in order to obtain the result that the initial value problem for the wave equation is well posed, 

the only missing element is uniqueness. As it turns out, uniqueness has a rather simple proof: the 

answers will have a sketch of the proof. 

6.2 Statement: Cerenkov radiation and Mach cone. 

Cerenkov radiation is the electromagnetic radiation emitted when a charged particle passes through 

an insulator at speed greater than the light speed in the medium. It shows up as a glowing blue cone 

of light with the traveling particle at its tip. It is somewhat analogous to the sonic boom produced 

by a supersonic aircraft. Below a simple model that captures the essence of the phenomena. 

Consider a point traveling along a straight line at speed v, forcing the wave equation in 3-D (for 

an homogeneous and isotropic media). Assume also that v > c, where c is the wave speed. In 

appropriate non-dimensional units, the mathematical problem is 

utt − Δ u = δ(x) δ(y) δ(z − β t), (6.6) 

where β = v/c > 1 and Δ = ∂x 
2 + ∂y 

2 + ∂z 
2 is the Laplace operator in 3-D. We are interested in the 

solution of this problem when the point moves into a media at rest,19 in unbounded space,20 and all 

the transients are gone — i.e.: the motion started far in the past. 

A. Show that the problem can be reduced to an initial value problem for the wave equation 

in 2-D, and use this to find the solution. What is the half angle of the Cerenkov cone? 

B. What if 0 ≤ β < 1? Can the problem be reduced to a 2-D initial value problem? Why not? 

HINT-1. (An 18.03 hint!) Example: how to reduce to an initial value problem the impulse problem 

for the harmonic oscillator ü+ u = c δ(t), with u ≡ 0 for t < 0 . Look for a continuous solution 

where u solves the homogeneous problem for t = 0, and u̇ has an appropriate jump at t = 0. Hence, 

for t > 0, u solves the homogeneous problem, with initial conditions u(0) = 0 and u̇(0) = c. 

HINT-2. In order to solve the initial value problem for the wave equation in 2-D, you will need the 

Green’s functions for the equation. These are: 

G1 =
1 ∂ H(t − r) 

,
22 π ∂t 

√
t2 − r

19That is: u ≡ 0. 
20That is: all of R3 . 
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so that, for t = 0 : G1 = δ(x) δ(y) and (G1)t = 0, (6.7) 

G2 =
1 H(t − r) 

,
2 π 

√
t2 − r2 

so that, for t = 0 : G2 = 0 and (G2)t = δ(x) δ(y), (6.8) 

� 1 
where r = x2 + y2, both G1 and G2 solve utt = uxx + uyy, and H(ζ) = (1 + sign(ζ)) is the Heav

2 
iside step function. 

HINT-3. Note that δ(z − β t) = δ(β t − z) = 
1 √

β2 
δ 

� 
β t − z √
β2 

� 

. − 1 − 1 

Remark 6.6 You should note that, at the conic wave-front, the solution develops a very large 

amplitude (in fact: it is singular there). This is what triggers the blue “glow”. In fact, the singularity 

is caused by the point source (i.e.: a delta forcing) approximation. For a small, but finite size, source 

the solution will develop a large amplitude at the wave front, but will not be singular. 

In the sonic boom case (supersonic propagation of a point source in, say, air) there is no infinite fields 

anywhere: at the wave front a shock wave appears21 (which cuts off the infinities). Furthermore: 

the shock wave is a “robust” object: it does not disappear when a finite size source is used. 

6.3 Statement: Moving point source in 1-D. 

Situations where one has a moving source in the context of wave propagation are quite common. In 

particular — when the source is compact and one is only interested in the resulting wave pattern 

far away from the source22 — one can often simplify the question by assuming a point source. Here 

we consider a very simple example of this type, in 1-D and for a scalar first order equation with 

constant coefficients (homogeneous media). We also assume “trivial” initial conditions. 

When the equation is also linear, the problem is very simple, and the only (mildly) interesting 

effect that occurs is that of “resonance” when the source moves at the characteristic speed. The 

mathematical problem in this case is 

ut + c ux = δ(x − s t) and u(x, 0) = 0, (6.9) 

21In some sense, the nonlinearity regularizes the solution: shocks do not involve infinite values of physical quantities. 
22Distances much greater than the source size. 



37 Rosales 18.306 Problem List. 

where c is the wave speed, s is the source speed (both constants), and δ( ) is Dirac’s delta function. ·
Show that (6.9) is equivalent to 

ut = δ(x − v t) and u(x, 0) = 0, (6.10) 

for some constant v. Then solve (6.10) for all possible values of v. What happens at resonance? 

The situation becomes much more interesting when the equation is nonlinear. Then the source 

can produce (or not) a precursor shock moving ahead of it — depending on the source speed and 

strength, and the (unrealistic) growth of the linear response in the resonant case is suppressed. As 

an example, consider the problem for the conserved density u 

� 
1 

� 

u 2 = δ(x − c t) and u(x, 0) = 0, (6.11) ut + 
2 x 

where c is a constant. Solve this problem for all possible values of c. 

HINTS 

H1. The solution responds to the delta-function forcing on the right with a discontinuity along 

x = c t. The discontinuity is such that the derivatives (interpreted in the weak sense) produce 

the delta function. Namely 
1 −c [u] + [u 2] = 1, (6.12) 
2 

where [ ] = jump across discontinuity (value ahead minus value behind). Specifically, if ua is 

the value of u immediately ahead of the discontinuity, and ub is the value immediately behind 

it, then: [u] = ua − ub and [u 2] = ua 
2 − ub 

2 . 

Note that not all the solutions to this equation are acceptable. The next hint, and 

remark 6.7, deal with this issue. 

H2. Characteristics converge into shocks. However, the discontinuity along x = c t is not a shock, 

but the response to a point forcing: the characteristics enter on one side of x = c t, and exit 

on the other. The only exception is when they enter/exit on one side and are parallel on the 

other — see remark 6.7. But the characteristics never converge on both sides of x = c t. 

dx du 
H3. The characteristics for the un-forced equation are: = u, along which = 0. Hence, the 

dt dt 
initial value u(x, 0) = 0 will persist at any given point x, till affected by something that makes


the characteristic equations fail — namely: either a shock wave or the delta-function forcing.
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H4. The solution to (6.11) is rather simple. It is made up by constant strength/speed shocks, 

regions where u is constant, and rarefaction fans. Further, it is a function of x/t only — why? 

H5. The shock conditions for (6.11) reduce to: (i) Shock speed is the average of u across the 

discontinuity. (ii) The value of u behind the shock is larger than the value ahead. 

H6. The rarefaction fans for (6.11) are solutions where all the characteristics determining u em

anate from a single point in space time and “fan” out. 

Remark 6.7 Here we elaborate on the subject matter of hints H1 and H2. Specifically: what 

restrictions the solutions of the jump equation in (6.12) must satisfy — which is what H2 is all 

about. Our objective is to understand the behavior of the characteristics for the equation in (6.11) 

at/near the location x = c t of the delta function forcing. To do this, we consider (6.11) as the limit 

of 
� 

1 
� 

2 
u 2 

x 
= f�(x − c t) as � → 0, (6.13) ut + 

where f�(z) is a smooth, positive function, with total unit area, vanishing outside z < �. The | | 
characteristic equations for this problem are 

dx du 
= u, along which = f�(x − c t). (6.14) 

dt dt 

Then, as long as the characteristics are outside the forcing region c t − � < x < c t + � , they are 

straight lines — along which u is constant. When they enter the forcing region, on the other hand, 

they accelerate (as u increases). Hence, the following situations (and nothing else) can arise: 

6.7-a. Characteristic enters the forcing region from the left, with u > c. 

Then u starts increasing, the characteristic speeds up and leaves on the right side of the forcing 

region, carrying a larger value of u. The � 0 limit of this situation is (6.15) below. → 

6.7-b. Characteristic enters the forcing region from the left, with u barely above c; i.e.: u = c + O(�). 

Similar to item 6.7-a, but the � 0 limit is: Immediately behind x = c t, u = c and the → 

characteristics are parallel to the path of the delta function. Immediately ahead of x = c t, 

u > c and the characteristics exit (to the right) from the path of the delta function. See (6.16) 

below. 
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6.7-c. Characteristic is overtaken by the forcing region, and enters it from the right, with u < c and 

sufficiently far below. 

Then, once inside the forcing region, u starts increasing and the characteristic speeds up. 

However, before the value of u along the characteristic reaches c, the characteristic reaches 

the back of the forcing region, and exits it. The � 0 limit of this situation is (6.17) below. → 

6.7-d. Same as item 6.7-c, but the value of u (when the characteristic enters the forcing region from the 

right) is just critical. 

Then the characteristic just barely makes it out (from the back) of the forcing region. The 

� 0 limit of this situation is (6.18) below. → 

6.7-e. Same as item 6.7-c, but the value of u (when the characteristic enters the forcing region from the 

right) is too close to c. 

Then, once inside the forcing region, u starts increasing, the characteristic speeds up, and 

grows beyond c. Thus the characteristic will end up exiting the forcing region from the same 

side it entered. In the � 0 limit of this, the characteristic “bounces back” (with a higher → 

value of u) into the ahead of the path of the delta function. But this creates a multiple valued 

region for the solution ahead of the delta, which means that this is an inconsistent situation, 

and cannot occur.23 

Thus, in terms of ua and ub (values immediately ahead — respectively behind – the discontinuity), 

these are the (only) acceptable possibilities for the solutions to equation (6.12): 

Case 1: ua > ub > c. (6.15) 

Case 2: ua > ub = c. (6.16) 

Case 3: ua < ub < c. (6.17) 

Case 4: ua < ub = c. (6.18) 

23If you try to solve equation (6.12) with a value of ua < c that is too close to c, you will see that then ub would 

have to be complex, with a nonzero imaginary part. 
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6.4 Statement: Nonlinear diffusion from a point seed. 

Solutions to linear equations with delta function data are particularly important because, via the 

superposition principle, they can be used to produce formulas for the solution with general data. In 

addition, because of the simplicity of the data, such solutions tend to have special symmetries that 

enormously reduce the complexity of the problem to be solved — e.g.: see sub-subsection 6.4.1. 

For nonlinear situations, because of the lack of a superposition principle, the solutions to problems 

with delta function data are not as fundamental. Nevertheless, the fact is that delta data introduces 

(just as in linear case) symmetries that sometimes make such problems solvable. Hence, since very 

few exact solutions are available for nonlinear equations, these solutions can be very interesting, 

and a useful learning tool. In addition, they often describe interesting asymptotic limits — such as 

(for example) the field distribution due to a localized source, far away from the source. 

In this exercise we consider the exact solutions that can be obtained for (certain kinds of) nonlinear 

diffusion set-ups, when the initial data corresponds to a point concentration of diffusing “stuff” (a 

“point seed”). In appropriate non-dimensional units, the problem is: 

n ut = div 
� 
|u| �u 

� 
for t > 0, �x ∈ Rd , and u(�x, 0) = δ(�x), (6.19) 

where � is the gradient operator in d-dimensions, and n ≥ 0 is a constant. 

Part 1. Solve the problem in (6.19) for n = d = 2 — see hint 6.1 and sub-subsection 6.4.1. 

Part 2. Solve the problem in (6.19) for n = 1 and d = 2 — see hint 6.2. 

Part 3. Solve the problem in (6.19) for n > 0 arbitrary and any d = 1, 2, . . . 

Part 4. Does (6.19) make sense if n < 0? Watch out, this is trickier than it looks! 

Hint 6.1 In linear diffusion problems there is no upper bound to the velocity at which things can 

diffuse — though the amount of “stuff ” diffusing at high velocity is very, very, small. This gives rise 

to the phenomena seen in sub-subsection 6.4.1 for the solution of (6.19) in the linear case n = 0. 

Namely: the solution is non-zero everywhere for any t > 0 — albeit very small for large �x. 

On the other hand, when n > 0, the diffusion coefficient u n vanishes with u. This allows for sharp | | 
fronts in the solutions, with u = 0 “ahead” of the front, and u > 0 behind it. Furthermore, the 



� 
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solution is not even smooth at the front! For example: 

⎧ 
⎪⎨ 0 for


⎫ 
⎪⎬x ≥ s t


2solves
 (6.20)
u =
 ut = u ux , 
x⎪⎩ 2 s (s t − x) for x ≤ s t
⎪⎭ 

where s > 0 is some constant. Notice that, while ux for the solution above in (6.20) is singular along 

x = s t — not even continuous, u 2 ux is continuous, and gives a well defined24 (u 2 ux)x. Hence, in 

order to make sense of solutions with sharp fronts, it is important that the term div |u| n �u in 

the equation be left as written, without being expanded. 

A “physical” explanation of why the fronts are not only sharp, but also singular, is as follows: Start 

the solution so that there is some boundary separating a region with non-zero concentration (u > 0) 

from one with zero concentration. Because the diffusivity is very small when u is small (limiting 

zero for u = 0), if the concentration is smooth at the edge of the non-zero zone, then there is no 

diffusion across the edge, and the edge does not move. But stuff starts diffusing from inside towards 

the edge, making the concentration profile steeper and steeper at the edge. Eventually (when the slope 

becomes infinity at the edge) the stuff “slightly” behind the edge has a large enough concentration 

(hence diffusivity) to diffuse right across the edge, which can start moving — but only as long as it 

stays very steep (singular). 

You should expect the solutions to the problem in (6.19) to exhibit behaviors similar to the 

one above in (6.20). The solutions will exhibit a sharp, expanding, boundary — with u > 0 inside 

and u = 0 outside. Further: u will have infinite steepness at this boundary. Unlike linear diffusion, 

where the edge of a diffusing blotch of stuff is blurry, when the diffusion coefficient is nonlinear, the edge 

can be very sharp. 

Hint 6.2 The solutions to the problem in (6.19) all have u ≥ 0 everywhere. Hence |u| n = u n . 

Hint 6.3 When considering the answer to part 4, look at the example where d = 1 and n = −1, 

and examine the similarity solutions of the type used in parts 1 – 3. Do they provide satisfactory 

solutions? Can you generalize your findings for other values of d and n? 

24Albeit singular along x = s t. 
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6.4.1 Example: Green function for the heat equation in Rd . 

Consider the initial value problem for the diffusion equation in d dimensions, with initial conditions 

corresponding to a point concentration of diffusing “stuff” (a “point seed”). In appropriate non

dimensional units, the problem is: 

ut = Δu for t > 0, �x ∈ Rd , and u(�x, 0) = δ(�x), (6.21) 

where Δ is the Laplacian operator in d-dimensions.


The problem in (6.21) is clearly invariant under rotations. In addition, since δ(c �x) = c −d δ(�x)


for any constant c > 0, (6.21) is also invariant under the transformation u(t, �x) c d u(c 2 t, c �x).
→ 

Hence, we expect the solution to the problem to satisfy the symmetry c d u(c 2 t, c �x) = u(t, �x). It 

follows then that 

u = t−d/2 U(z) for some function U, where z = √r
t
, (6.22) 

and r is the radial coordinate in Rd . Substitution of this into (6.21) yields 

−
2

1 
z 1−d 

� 
z d U 

�� 

= −
2

1
(dU + z U �) = z 1−d 

� 
z d−1 U �

�� 

, (6.23) 

where primes indicate derivatives with respect to z, and the following conditions should apply: 

A. Odd derivatives of U vanish at the origin. 

B. U vanishes as z →∞. 
� � 

∞ 

C. 1 = u dx1 dx2 . . . dxd = Ad−1 U(z) z d−1 dz, where Ad−1 = area of unit sphere in Rd . 
0 

Condition A follows because the solution u must be smooth at the origin, while conditions B and 

C guarantee that u δ(�x) as t 0. → ↓ 
1 

Equation (6.23) can be integrated once, to get U � = −z−
2 
z U . Thus U = c e 

2/4, where the constant 

c follows from the integral condition in item C above. Hence 

t−d/2 t−d/22 2 

Gd = 
Ad−1 

� 
∞ e−z2/4 zd−1 dz 

e − 4

r
t =

2d−1 Ad−1 Γ(d ) 
e − 4

r
t , (6.24) 

0 2

where Γ is the Gamma function, and Gd is the solution of (6.21). In particular: 

• A0 = 2 and Γ(1/2) = 
√
π. Thus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G1 = √

4

1 

π t 
e −x

2/(4 t).




� 
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1 
−r2/(4 t)A1 = 2 π and Γ(1) = 1. Thus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G2 = e .
• 

4 π t 

• A2 = 4 π and Γ(3/2) =
2

1 √
π. Thus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G3 =

(4 π t

1

)3/2 
e −r

2/(4 t).


In fact, it is easy to see (directly) that it should be 

1 
−r2/(4 t)Gd = G1(x1, t)G1(x2, t) . . . G1(xd, t) = e . (6.25) 

(4 π t)d/2 

This follows because δ(�x) = δ(x1) δ(x2) . . . δ(xd), and the expression in (6.25) satisfies the diffusion 

equation in d-dimensions. Comparing (6.25) with (6.24) then yields 

2 πd/2 
Ad−1 = . (6.26) 

Γ(d/2) 

This provides a rather indirect way to compute the area of the sphere in d-dimensions! 

Remark 6.8 General initial value problem for the linear diffusion equation in (6.21). 

Using the solution Gd above in (6.25), we can write 

u = Gd(�x − �s, t) u(�s, 0) ds1 ds2 . . . dsd, (6.27) 
Rd 

which provides an explicit formula for the solution of the initial value problem for the heat equation 

in Rd . For solutions that decay at infinity (including derivatives) fast enough, a proof of uniqueness 

is rather simple. Using integration by parts, one can see that any such solution will also satisfy 

d 1 � 1 � 

dt 2 Rd 
u 2dx1 . . . dxd = −

2 Rd 
(�u)2dx1 . . . dxd < 0. 

Hence, if u vanishes at time t = 0, it will vanish for all times. Thus, any two solutions with the 

same initial values must be equal, as their difference satisfies the equation with zero initial data. 

6.4.2 Moisture transport in porous media. 

Moisture transport in an unsaturated porous media25 provides an example of a nonlinear diffusion 

equation of the type studied in this exercise. In many cases, the underlying flow can be modeled 

by a nonlinear diffusion equation of the form ut = div (µ(u)�u) , where u ≥ 0 is the water volume 

25Multi-phase flow through soil, rock, filters, wood, concrete and many other natural and man-made materials. 
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fraction or saturation, while µ(u) is the moisture diffusivity — a property of the porous medium. 

For many applications, the diffusivity has been correlated experimentally with a power law of the 

form µ(u) ∝ u n . A few relevant references are: 

M. A. Heaslet and A. Alksne.


Diffusion from a fixed surface with a concentration-dependent coefficient.


J. Soc.	 Indust. Appl. Math., 9(4):584–596, 1961.


R. E. Pattle.


Diffusion from an instantaneous point source with a concentration-dependent coefficient.


Quart. J. Mech. Appl. Math., 12(4):407–409, 1959.


L. F. Shampine.


Concentration-dependent diffusion. II. Singular problems.


Quart. Appl. Math., pp. 287–293, Oct. 1973.


7 Shock Jump and Entropy Conditions. 

7.1	 Statement: Lax entropy condition for scalar convex conservation 

laws, and information loss. 

Introduction. 

Consider the question of measuring the amount of variability of an arbitrary function f = f(x) — its 

“wavy-ness”, as it were. By this we mean that we want to define an operation I on functions such 

that: I(f ; a, b) is a number that provides a “measure” of the amount of “wavy-ness” contained 

by the function f in the interval a < x < b . The following seem to be desirable properties that 

we would like I to have: 

P1. I(f ; a, c) = I(f ; a, b) + I(f ; b, c) for a < b < c. 

P2. I should grow as f becomes more wavy, and be at its minimum when f is a constant. In 

particular, if f = α + s g(x), where α is a (fixed) constant, s is a parameter, and g is a function 

with vanishing mean26 over a < x < b, then I(f ; a, b) should be a strictly increasing function 

of s , with a minimum at s = 0. | |
26In other words: g encodes the “shape” of the graph of f , s its amplitude, and α its mean. 
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P3. It would also be nice if we could require that I(f ; a, b) = I(f + µ; a, b) for any constant µ, 

since adding a constant to f should not change its wavy-ness. However, as we will see below, 

we will have to give up on this property. 

Unfortunately, these are not properties that characterize I uniquely, so there are many possible 

choices for what I should be — not surprising, since “wavy-ness” is a rather ambiguous concept. 

1st. From item P1 it seems reasonable to conclude that we should take I as an integral of some 

local density Ψ — with Ψ depending only on the local values of f — in other words, Ψ is a function 

of f and its derivatives. 

2nd. In order to have I defined even for functions f that are not smooth, we eliminate any 

dependence of Ψ on derivatives, and take Ψ = Ψ(f). Thus 

� b 
I(f, a, b) = Ψ(f(x)) dx, where Ψ is some fixed function. (7.1) 

a 

� b 
Then (assuming that Ψ is smooth), in order to enforce P2, we note that I = Ψ(α + s g(x)) dx 

a 

yields 
d

ds 
I 

s=0 
= 0 and 

d

ds

2I
2 

= 
� 

a

b 
g 2(x) Ψ� �(α + s g(x)) dx. Since g is arbitrary, it follows that 

d2 Ψ 
P2 applies if Ψ is convex: = Ψ� � ≥ CΨ > 0, (7.2) 

df 2 

where CΨ is some constant. 

Remark 7.1 It should be clear that I, as defined above by (7.1) and (7.2), does not satisfy P3. 

If, on the other hand, we allow the density Ψ to depend on derivatives of f , then P3 can be satisfied. 

For example 
� b 

I(f, a, b) = 
a 
|f �(x)| dx, (7.3) 

is called the variation of f , and satisfies all three properties P1 – P3. This definition can be extended 

to functions f without a derivative, but then life gets complicated — so we will avoid this here. 

Remark 7.2 Possible “interpretations” of the meaning of I: 
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I1. In some (very rough) sense, the amount of information encoded in some function f = f(x) is 

determined by how “wavy” the function is. A constant encodes just one number: its value. A 

sinusoidal can be characterized by an amplitude, a wavelength, and a phase. And so on: the 

more complicated the wave shape, the more parameters (information) that are needed to fully 

describe it. On the other hand, one could argue that any two sinusoidals have the same amount 

of information — independent of, say, their amplitude. However, “wavy-ness” increases as 

the amplitude grows — see item P2. 

I2. Another interpretation for I is that it is some kind of energy, as follows: Imagine that the 

function f describes the density of something that “likes” to be at some given equilibrium state 

f ≡ fe = constant, and generates forces when away from equilibrium. Then the “wavy-ness”, 

as defined by (7.1) is a measure of the energy needed to maintain a density f , with Ψ the 

potential energy of the forces generated. 

The problem. 

Consider a scalar conservation law (with shocks), of the form 

d2q
ρt + qx = 0, with q = q(ρ) smooth and convex: 

dρ2 
≥ Cq > 0, (7.4) 

where Cq is some constant. Then SHOW THAT: 

The Lax entropy condition on shocks is equivalent to the statement 
(7.5) 

that I, as defined by (7.1) and (7.2), is decreasing across shocks. 

In other words, you have to show that I is decreased by the presence of a shock if and only the jump 

across the shock in ρ is decreasing — since, for q convex, this corresponds to the characteristics 

converging into the shock path. 

In order to do this problem, proceed as follows; 

1. Show that, if ρ = ρ(x, t) is a smooth solution of (7.4), then Ψ(ρ) is “conserved”. Namely: 

dh dΨ 
Ψt + hx = 0, with h = h(ρ) defined by = c(ρ) , (7.6) 

dρ dρ 

where c = 
dq 
dρ 

is the characteristic speed for the conservation law. Thus 

d 
dt
I(ρ, a, b) = ha − hb if ρ is smooth for a ≤ x ≤ b, (7.7) 
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where ha = h(ρ(a, t)) and hb = h(ρ(b, t)). This identifies h as the “flux” for Ψ. 

2. Consider now the situation where the solution ρ = ρ(x, t) is smooth for a ≤ x ≤ b, except 

for a simple jump discontinuity at a < x = σ(t) < b, satisfying the Rankine-Hugoniot jump 

condition27 

dσ [q] qR − qL
σ̇ = 

dt 
=

[ρ]
= 
ρR − ρL 

, with ρR =� ρL. (7.8) 

Here the subscript R indicates evaluation on the right side of the discontinuity — i.e. at 

x = σ + dx, and the subscript L indicates evaluation on the left side of the discontinuity — 

i.e. at x = σ − dx. Then show that (7.7) has to be modified as follows


d

dt
I(ρ, a, b)
 = ha − hb + hR − hL − σ̇ (ΨR − ΨL), (7.9) 

D 

where D is the contribution from the discontinuity to the rate of change of I. 
equivalent to 

Hence (7.5) is 

3. Show that (7.10) holds. 

sign(D) = sign(ρR − ρL). (7.10) 

Hint: Note that, using (7.8), we can write 

D =

1


ρR − ρL 

� 
(h h )(ρ ρ ) ( )(Ψ Ψ )− − − − −q qR L R L R L R L 

M

= , (7.11)

ρR − ρL 

where M is defined by the formula. Thus, to prove (7.10), you have to show that 

M > 0 for ρR = ρL. (7.12) 

This you can do by keeping ρL fixed (but arbitrary) and considering M as a function of ρR. 

Then (7.12) follows because 

d2M dM 
3a. 

dρ2 
R 

= 
dρR 

= M = 0 for ρR = ρL. 

d2M 
3b. 

dρ2 
R 
> 0 for ρR �= ρL. 

⎫ 
⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎭ 

(7.13)


It is in 3b where the convexity of both q and Ψ plays its role. In particular, notice that:


For a convex function, the tangent line through any point in its graph

(7.14) 

is strictly below the graph of the function away from the tangent point. 

27These guarantee that ρ is conserved. 
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7.2	 Statement: Zero viscosity limit in scalar convex conservation laws 

and dissipation. 

Consider a scalar convex conservation law, with a small amount of “viscosity” added. Namely: 

d2q
ρt + qx = ν ρx x, with q = q(ρ) smooth and convex: 

dρ2 
≥ Cq > 0, and ρ(x, 0) = f(x), (7.15) 

where Cq is some constant, 0 < ν � 1, f is smooth, and f and all its derivatives vanish (rapidly) 

as x We want to investigate the behavior, as ν 0, of the solution to this problem. In | | → ∞. → 

particular, we want to compute 

� 
∞ 

I = I(t) = 
−∞ 

Ψ(ρ(x, t)) dx, as ν → 0,	 (7.16) 

where Ψ is a smooth convex function28 such that Ψ(0) = 0. Furthermore, let h = h(ρ) be defined 

by 
dh dΨ	 dq 

= c(ρ) and h(0) = 0, where c = .	 (7.17) 
dρ dρ	 dρ 

Note 1. We will assume that the solution ρ = ρ(x, t) to (7.15) exists, that it is smooth, that ρ and 

all its derivatives vanish (rapidly) as |x| → ∞, and that ρ is unique (within this class). 

Note 2. Here we will use concepts introduced in the problem Lax Entropy condition for scalar convex 

conservation laws and information loss — you should read the statement for this exercise. This will 

also serve the purpose of giving meaning to I as a measure of the “wavy-ness” of the solution. 

dΨ 
Multiplying by the equation ρt + c(ρ) ρx = ν ρx x satisfied by ρ, and using (7.17), we obtain 

dρ 

Ψ(ρ)t + h(ρ)x = ν Ψ�(ρ) ρx x,	 (7.18) 

where the prime denotes differentiation with respect to ρ. Integrating this equation then yields 

d I 
= ν 

� 
∞ 

Ψ�(ρ) ρx x dx = −ν 
� 

∞ 

Ψ� �(ρ) ρ2 
x dx < 0, (7.19) 

dt −∞ −∞ 

which shows that I is, always, a decreasing function of time. 

From (7.19) is seems natural to conclude that: in the limit ν 0, I becomes constant. However, → 

this is false! As ν 0, the solution to (7.15) develops thin transition layers (shocks) where the → 

d2 Ψ

28Hence ≥ CΨ > 0, for some constant CΨ.


dρ2 
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derivatives become large, so that the right hand side in (7.19) does not vanish as ν 0. Your → 

task here is to check this fact. Proceed as follows.


First, consider the case where the solution to (7.15) develops a single shock as ν 0, along some
→ 

path x = σ(t). Then, 

For 0 < ν � 1, the solution near x = σ (for any fixed time t) can be described 

by a traveling wave solution to the equation in (7.15), of the form 

x − s t d σ 
where z = and s =ρ ∼ R(z),


ν d t

,


with limits ρR as z →∞ and ρL as z → −∞. On the other hand, away from 

x = σ, the derivatives of ρ remain bounded as ν 0.→ 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 

(7.20)


Use (7.20) and (7.19) to compute the limit, as ν 0, of 
d I 

. You should be able to show that → 
dt 

d

dt 
I −→ hR − hL − s (ΨR − ΨL), (7.21) 

where the subscript R indicates evaluation at ρR, and the subscript L indicates evaluation at ρL. 

Notice that this is the same formula for the contribution to the rate of change of I by a shock 

listed in the statement to the problem Lax Entropy condition for scalar convex conservation laws and 

information loss — see equation (7.9) there. 

Hint. Consider the first integral in (7.19). Away from x = σ, the derivatives of the solution remain 

bounded, and the contribution of these regions to the integral vanishes as ν 0. Hence we can → 

limit the integration to a small region near the shock, namely 

d I ≈ ν 
� σ+� 

Ψ�(ρ) ρxx dx, 0 < ν � � � 1, (7.22) 
dt σ−� 

where the traveling wave approximation ρ ∼ R(z) in (7.20) can be used. From this, using the o.d.e. 

that R satisfies,29 the result in (7.21) follows. 

Second, if the solution to (7.15) develops more than one shock as ν 0, then a calculation as the → 

one above can be done near each of the shock locations x = σ�(t), obtaining as the result that the 

right hand side in (7.21) is replaced by a sum including the contributions for each one of the shocks. 

29Note that you do not need to have an explicit formula for R. Knowing the o.d.e. that R satisfies, and knowing 

the limits as z → ±∞ for R(z), should be enough. 
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Remark 7.3 The result in this problem illustrates a persistent phenomena in nonlinear p.d.e. 

that incorporate “small” perturbations involving the highest derivatives in the equation. Then, as 

the perturbations vanish, their effects on the solution do not. For example: in high Reynolds 

number flows thin boundary layers can form (mostly near walls), where viscous effects dominate, 

and contribute a finite amount (that does not go away as the Reynolds number goes to infinity) to 

the flow behavior. In other cases high frequency (thin) structures appear over large regions of the 

solution, which again do not go away as the perturbations vanish. This second type of situation 

is quite often associated with open problems where a good mathematical theory is lacking — e.g.: 

collision-less shocks in plasmas, turbulence, etc. 

7.3 Statement: Entropy conditions for scalar (non convex) problems. 

Consider the following conservation law, for the single scalar function v = v(x, t), 

vt + px = 0, where p = v (v2 − 1), (7.23) 

v is the density for some conserved quantity, and p is the flux. Shocks for this equation, if allowed, 

should satisfy the Rankine-Hugoniot jump conditions 

[p] −s [v] + [p] = 0, ⇐⇒ s =
[v] 

= va 
2 + va vb + vb 

2 − 1, (7.24) 

where [ ] denotes the jump across the discontinuity of the enclosed quantity, va (resp. vb) is the ·
value of v immediately ahead of (resp. behind) the discontinuity, and va =� vb. 

The objective of this exercise is to find what additional restrictions (“entropy” con

ditions) the solutions to (7.24) must satisfy to produce acceptable as shocks. We 

will try two approaches. This problem has 3 “tasks”, do them all! 

“STABILITY” ANALYSIS: Let v be a steady state “solution” to (7.23), with a shock satis

fying (7.24). Namely, let 

v(x, t) = a for x ≥ st, and v(x, t) = b for x ≤ st, (7.25) 

where a =� b are constants and s = a 2 + a b + b2 − 1. Then: 

Declare (7.25) an “acceptable” solution if and only if the linear problem that 
� 

(7.26) 
results when infinitesimal perturbations to (7.25) are considered is well posed.




�


� 
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In other words: consider solutions to (7.23 – 7.24) of the following form: 

v(x, t) = a + A(x, t) for x ≥ st + r(t), and v(x, t) = b + B(x, t) for x ≤ st + r(t), (7.27) 

where A, B, and r are infinitesimal. This will lead to a system of linear equations for A, B, and r 

— with initial conditions 
⎫ 
⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎭ 

A(x, 0) = A0(x) defined for x ≥ 0 only, 

B(x, 0) = B0(x) defined for x ≤ 0 only, (7.28) 

r(0) = r0. 

Then the solution in (7.25) is accepted if and only if the initial value problem for A, B, and r is 

well posed (solutions exist and are unique).


Your task #1: Derive the equations satisfied by A, B, and r, and find which conditions must


be imposed on a and b so that the initial value problem for A, B, and r is well posed.


HINT-1. Existence will be obvious.30 However: be careful that you check uniqueness!


HINT-2. Interpret the conditions on a and b graphically. In the p-v plane,31 consider the two


curves: p = v (v2 − 1), and the secant line going through (v = a, p = p(a)) and (v = b, p = p(b)) —


note that the shock speed s is the slope of this secant line! What do the conditions on a and b


mean in terms of this picture?


ZERO VISCOSITY LIMIT: Consider equation (7.23) as the � 0 of the equation ↓ 

vt + px = � vxx. (7.29) 

Then the solution in (7.25) is accepted if and only there is a solution of this equation whose limit 

is (7.25). To be more precise: a solution to (7.29) of the form 

� 
x − s t 

v = y
 (7.30)


is sought such that y(z) a as z →∞ and y(z) b as z → −∞ (notice that y satisfies a second → → 

order O.D.E., which can be easily integrated once). If such a solution exists, then (7.25) is accepted. 

Your task #2: Carry out the calculation above, and find out under what restrictions on a and 

b a solution such as in (7.30) can be found. Compare your answers with those from the task #1. 

30The problem is very simple, and the solutions can be written explicitly.

31Let the horizontal axis be v, and the vertical be p.




52 Rosales 18.306 Problem List. 

HINT-3. You will find yourself having to inspect an O.D.E. of the form y � = F (y). You do not 

need to be able to solve this equation explicitly to answer the question. Just notice that the 

solutions to y � = F (y) connect consecutive zeros of F from z = −∞ to z = +∞, with the direction 

of the connection determined by the sign of F between the two zeros.32 As in hint-2, a geometrical 

approach helps: think of F as the difference between p(y) = y (y 2 − 1) and a straight line. 

Your task #3: Imagine that, in equation (7.23), we replace p = v (v2 − 1) by p = (v2 − 1)2 . 

How will this change the answers? In particular — note that this is the ONLY questions whose 

answer is required, but you must justify your answer: (i) Will the conditions resulting from a 

stability analysis, and those resulting from a zero viscosity limit, be the same? (ii) If not, which set 

of conditions is better? 

HINT-4. If you followed the advice of the prior hints, and interpreted your analysis for the prior 

two tasks geometrically, you should be able to perform this last task with nearly zero algebra. If 

not, you probably missed some key issue with tasks #1 or #2. Go back and take a second look. 

What your prior analysis should have shown you is that the zero viscosity limit is a “global” criteria 

— depending on the values of p(v) for the whole range between a and b, while the stability analysis 

is “local” criteria — depending on the behavior of p near a and b only. 

Remark 7.4 Equation (7.23) is a not-too unrealistic (qualitative “toy” model) for some of the 

problems that arise when shock waves and phase transitions are (simultaneously) involved. Just 

to give you a little bit of the flavor of the connection: for a polytropic gas the equation of state 

e = p v/(γ − 1) gives isothermals and isentropes that are convex curves in the p-v plane.33 However, 

when van der Waals forces are added, the curves become non-convex and develop local maximums 

and minimums like p = p(v) above in (7.23), which lead to complicated restrictions on what solutions 

of the Rankine-Hugoniot conditions should be allowed, etc. Of course, (7.23) is far too simple to 

capture anymore than a few of the issues that arise in the “real” problem. 

32The nature of lim y depends on the zero: simple (higher order) zeros give exponential (algebraic) behavior. 
z→±∞ 

33Actually, the important curves to consider are the Hugoniot curves, which are also convex. 
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7.4 Statement: Gas Dynamics strong shock conditions. 

Consider the 1-D Euler equations of Gas Dynamics, and a right shock wave. In a frame of reference 

moving with the wave, the equations governing the propagation of the shock are 

ρ0 u0 = ρ1 u1 < 0 (conservation of mass), (7.31)


ρ0 u0
2 + p0 = ρ1 u1

2 + p1 (conservation of momentum), (7.32)


ρ0 u0 E0 + p0 u0 = ρ1 u1 E1 + p1 u1 (conservation of energy), (7.33)


ρ0 < ρ1 (entropy), (7.34)


1 2where ρ is the gas density, u is the flow velocity, p is the pressure, E = u + e is the energy 
2 

per unit mass, e is the internal energy per unit mass, the subscript 0 (resp. 1) indicates values 

immediately ahead (resp. behind) the shock, and ρ0 u0 < 0 because the flow is from right to left 

across the shock. 
� 

1 2 
� � 

1 2 
� 

p
Equation (7.33) is equivalent to ρ0 u0 u0 + h0 = ρ1 u1 u1 + h1 where h = e + is the 

2 2 ρ 
enthalpy. Hence, using (7.31), we see that equation (7.33) can be replaced by:


1 2 1 2 u0 + h0 = u1 + h1. (7.35) 
2 2 

Furthermore, assume a strong shock in a polytropic gas, so that 

h = 
γ p 

a 2 = γ
p u0 

(γ − 1) ρ 
⇐⇒ 

ρ
, and M = − 

a0 

� 1, (7.36) 

where γ > 1 is the ratio of specific heats, a > 0 is the sound speed, and M is the Mach number 

with respect to the flow ahead. Note that M > 1 is equivalent to equation (7.34). 

DERIVE (approximate, leading order) expressions for u1, ρ1, and p1 in terms of u0, ρ0, and p0. 

HINT: Use equation (7.36) to eliminate p and h — from equations (7.32) and (7.35) — in favor of 

a 2 . Then use M � 1 to simplify the resulting equations. From then on, it should be smooth sailing. 

PART II: rewrite the shock equations in terms of the coordinate frame where the fluid 

ahead of the shock is at rest, with U > 0 the shock velocity relative to the flow ahead. 



� 
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7.5 Statement: Entropy conditions for the p-system. 

Consider the following system of conservation laws (the p-System) in one space dimension 

vt − ux = 0 and ut + px = 0, (7.37) 

where p = p(v) for 0 < v < ∞. We are only interested in solutions where v ≥ 0, and assume that 

(a) p > 0, 

dp 
(b) < 0,

dv 

d2p
(c)


dv2 
> 0,


(d) p 0 as v→ → ∞, 

(e) p as v 0.→ ∞ → 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 

(7.38)


For example p = v −γ , with γ > 2, has these properties. An important conclusion (needed for the 

answer) is that p is strictly decreasing function of v, with a convex graph = any straight line ⇒ 

tangent to the graph of p lies strictly below the graph, except for the point of contact. The system 

in (7.37) is strictly hyperbolic, with characteristic speeds ±a(v), where a = −dp/dv > 0 . 

Remark 7.5 (Examples of physical contexts where (7.37) applies). 

As we saw in the lectures, the system in (7.37) can be used to model gas dynamics in one dimension 

(inside a narrow tube, say), when transport effects (viscosity and heat conductivity) can be ignored, 

and the motion is assumed isentropic (entropy identically constant). In this case v is the specific 

volume, u is the flow speed, p is the pressure, x is the mass-Lagrangian coordinate, and a is the 

sound “speed” in the Lagrangian coordinates. In this case x has dimensions mass/area, and a has 

dimensions mass/(area × time) — where the area in question is the cross-sectional area of the tube 

where the motion occurs. 

The system in (7.37) is also a model for long waves in shallow channel with a flat horizontal bottom, 
g

where v = 1/h, h is the water depth, p = v −2 is the integral over the depth of the hydrostatic 
2 

pressure (divided by the water density), g is the acceleration of gravity, u is the depth averaged flow 

velocity, and x a Lagrangian coordinate measuring the volume (per unit width of the channel) of 

water from some fixed parcel of liquid — hence x has dimensions of area and a (the wave speed in 

Lagrangian coordinates) has dimensions of area over time. 
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The system in (7.37) is also a model for the longitudinal vibrations of an homogeneous elastic rod. 

In this case x is a Lagrangian coordinate attached to each point along the rod, equal to the position 

of the point when the rod is at rest. Then, if d is the current position of each point, v = dx − 1 is 

the strain, u = dt is the velocity, and −ρ p = F (v) is the elastic restoring force — with ρ the density 

(mass per unit length) of the rod. 

For the equations in (7.37), consider now a shock wave moving with constant speed D > 0 into 

a rest state ahead of the shock, where 0 < v = v0 < ∞ and u = 0. Let then v = v1 and u = u1 

be the state behind the shock (this is the region x < D t if the shock is at x = 0 for t = 0). The 

Rankine-Hugoniot jump conditions must apply across the shock, so that 

D (v1 − v0) + u1 = 0 and − Du1 + (p1 − p0) = 0, (7.39) 

where pj = p(vj ). We now take the position that we know the state ahead of the shock, and want to 

predict the state behind as a function of the shock speed D, for whatever speeds are allowed. 34 Thus 

we re-write these equations in the equivalent form: 

u1 = D (v0 − v1) and D2 = 
p1 − p0 

, (7.40) −
v1 − v0 

where the second equation gives v1 implicitly as a function of D and v0, and the first can be used 

to recover u1. We will now investigate these equations. SHOW THAT: 

1. Let F = F (v1) be the right hand side of the second equation in (7.40) — where v0 is given 

and fixed. F is defined for 0 < v1 < ∞ and 

1a. F →∞ as v1 → 0. 1c. dF/dv1 < 0 for 0 < v1 < ∞. 

1b. F → 0 as v1 →∞. 1d. F (v1) = a 2(v0). 

Hint: To show 1.c, use that the graph of p is convex — see the paragraph below (7.38). 

2. From item 1, we conclude that (this is obvious, you do not have to show it): 

2a. For every value 0 < D < ∞ there is exactly one value ∞ > v1 > 0 satisfying (7.40). 

Furthermore: v1 is a decreasing function of D. 

2b. If D > a0 = a(v0), then v1 < v0 (and u1 > 0) — the wave compresses. 

2c. If D < a0 = a(v0), then v1 > v0 (and u1 < 0) — the wave expands. Below, in item 4, you 

are asked to show that waves like this (expansion shocks) are not allowed. 

34Part of this problem will be to show that there is a minimum possible shock speed. 
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3. Notice that (7.40) implies that −D2 is the slope of the secant line through the points (v0, p0) 

and (v1, p1) in the graph of p. From the convexity of this graph, conclude that: 

3a. v1 < v0 = ⇒ −a1
2 < −D2 < −a0

2 = ⇒ a1 > D > a0. 

3b. v1 > v0 = −a1
2 > −D2 > −a0

2 = a1 < D < a0.⇒ ⇒ 

4. From items 2 and 3 it follows that for a compressive right moving shock the right charac
dx 

teristics = a converge into the shock, while for an expansion shock they originate at the 
dt 

shock. Argue then that expansion shocks violate causality, and therefore they are not 

acceptable solutions to the Rankine-Hugoniot jump conditions. Only the compression 

shock solutions should be accepted. 

Hint: the solution at any point in space-time is determined by the information carried by the 

two characteristics (one left and one right) arriving at that point. If only compression shocks 

are allowed, then these two characteristics will always connect the point to either initial data 

or boundary data. What happens if expansion shocks are allowed? 

Remark 7.6 Obviously, similar arguments apply to left moving shocks, where D < 0. In this 

case, again, only the compression branch solutions to the Rankine-Hugoniot equations are accept
dx 

able. These have the property that the left moving characteristics = −a converge into the shock: 
dt 

−a0 > D > −a1, where the subscript 0 refers to the state upstream of the shock (the left in this 

case), and the subscript 1 refers to the state downstream of the shock (the right in this case). 

The condition that the characteristics corresponding to the shock (right characteristics for a right 

shock, and left characteristics for a left shock) should converge into the shock is called a Lax Entropy 

Condition. In the 1950’s Lax introduced conditions of this type as conditions that shocks for general 

systems must satisfy so that causality is not violated. In the case of Gas Dynamics the Lax condition 

is equivalent to the statement that the entropy contents of a fluid parcel increases as it goes through 

the shock, hence the name. 

7.6 Statement: Shallow water - Energy dissipation at shocks. 

Consider the Shallow Water Wave equations in 1-D over a flat horizontal bottom: 

� 
1 

� 

ht + (h u)x = 0 and (h u)t + h u2 +
2 x 
g h2 = 0, (7.41) 
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where the first equation expresses the conservation of mass (or volume, since the density is constant), 

the second expresses the conservation of momentum, and g is the acceleration of gravity. 

Part I 

For solutions without hydraulic jumps (i.e.: shocks), show that the mechanical energy is also 

conserved, and derive an equation of the form 

(hE)t + (Fe) = 0, (7.42) x 

1 
where hE = h u2 + Pe is the energy density and F = h uE + Wp is the energy flux. Find explicit 

2 
expressions for PE and Wp — what physical interpretation do these two quantities have? 

Part II 
� x 

Introduce the Lagrangian coordinate z = h(s, t) ds — where x ∗ = x ∗(t) is a point following the 
x ∗ 

dx∗
∗ ∗flow, so that = u = u(x , t) — and show that the equations take the form 

dt 
� 

1 
� 

vt − uz = 0 and ut + g h2 = 0. (7.43) 
2 z 

These equations remain valid even when hydraulic jumps arise: the first equation expresses volume 

conservation35 in Lagrangian coordinates, while the second expresses momentum conservation.36 

Show that in these coordinates, when hydraulic jumps are absent, the equation for the conservation 

of the mechanical energy takes the form 

Et + (Wp)z = 0. (7.44) 

Part III 

Show that hydraulic jumps dissipate: mechanical energy is lost at hydraulic jumps — the lost 

energy, presumably, becoming internal (thermal) energy.37 Proceed as follows: 

35Note that v dz = v h dx = dx, so that v is the volume density.

36Note that u dz = h u dx, so that u is the momentum density.

37You are not asked to show this. The process is quite complicated, and not completely understood. For example:


part of the energy goes directly into heat via viscous dissipation by the turbulent eddies generated at the jump. 

Another part goes into surface energy at the gas bubbles created as air is entrained — but these bubbles eventually 

disappear, as they move back to the surface or the air in them dissolves into the water. 
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Step III-1. As pointed out in part II, the equations in (7.43) remain valid at hydraulic jumps. 

Hence, assume a hydraulic jump with constant speed D > 0, moving to the right into fluid at rest 

— where h = h0 > 0, v = v0 = 1/h0, and u = u0 = 0. Then the Rankine-Hugoniot jump conditions 

yield 
� 
1 

� 

D [v] + [u] = 0 and − D [u] + g h2 = 0, (7.45) 
2 

where the brackets denote the jumps across the shock of the enclosed quantities — e.g.: [v] = v0 − v1 

— and a subscript 1 indicates the value of a variable behind (to the left of) the jump. 

Remark 7.7 There is no loss in generality in assuming a hydraulic jump moving to the right into 

fluid at rest, because the equations are: (a) Left-right reflection invariant. (b) Galilean invariant. 

Remark 7.8 Note that z has units of area, hence the shock “speed” D in Lagrangian coordinates 

has units of area per second. In other words: D is the volume flow per unit width across the jump. 

Remark 7.9 Notice that, because D is constant, the state behind the hydraulic jump is also 

constant. Thus the flow considered here is very simple: (h, u) = (h0, 0) ahead of the shock (z > D t) 

and (h, u) = (h1, u1) behind the shock (z > D t). The conclusions, however, apply in general, since 

the behavior of shocks is controlled by the local values of the variables — not their derivatives. 

Furthermore, the Lax entropy conditions must apply a1 > D > a0 — where a = g h3 is the 

characteristic speed in Lagrangian coordinates. Show that this is equivalent to either of 

h1 > h0 or u1 > 0. (7.46) 

Remark 7.10 In fact, the purpose of this problem is to show that the Lax entropy conditions 

are exactly equivalent to the statement that hydraulic jumps dissipate. The solutions to 

the Rankine-Hugoniot jump conditions that do not satisfy the Lax entropy conditions create (!) 

mechanical energy at the hydraulic jumps. Thus they either would violate conservation of energy, 

or would have to transform internal (thermal) energy into mechanical energy — thus decreasing the 

total amount of entropy in the system, violating the second law of thermodynamics. 

Step III-2. As you were asked to show in another problem, in the presence of a shock, equation 

(7.44) should be modified to 

Et + (Wp) = −d δ(z − D t), (7.47) z 
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where δ( ) is Dirac’s delta function, z = D t is the position of the shock, and d = D [E]− [Wp]. The ·
statement that hydraulic jumps dissipate follows because d > 0 — show this. This last equation 

shows that a point sink of mechanical energy appears at the location of the jumps. 

Furthermore: show that for solutions of the Rankine-Hugoniot jump conditions that do not satisfy 

the Lax entropy condition (hence h1 < h0 and u1 < 0), d < 0. This proves the point in remark 7.10. 

Hint 7.1 It is convenient to carry the algebra in non-dimensional variables. Use the following 

non-dimensional variables in your calculations: h = (D2/3/g1/3) h̃, u = D1/3 g 1/3 ũ, E = D2/3 g 2/3 Ẽ, 

and d = D5/3 g 2/3 d̃, where the variables with tildes have no dimension. 

8 Singularities and characteristics. 

8.1 Statement: Singularities in PDE solutions (problem 01). 

Consider the following PDE problem, for the real valued function u = u(x, y) 

1 + x 2/3
� 
ux + uy = 0, with u(x, 0) = x for−∞ < x < ∞. (8.1) 

Using the method of characteristics, show that the solution is defined (everywhere & single-valued) 

by the (implicit) equation 

x� 
ds 

y − f(u, x) = 0, where f(u, x) = 
u 1 + s2/3 

. (8.2) 

This solution has a weak singularity along x = 0 — show this and specify the nature of the 

singularity: which derivatives fail to exist? Nevertheless, x = 0 is not a characteristic (show this). 

This does not contradict the statement that weak singularities can exist only along characteristics,38 

because (in this case) the singularity is caused by the coefficients in the equation — which have a 

singularity along x = 0. Where else does the solution above have a weak singularity? 

8.2 Statement: Steady State Shallow Water (problem 01). 

The conservation form of the equations for 2-D shallow water waves over a flat bottom is 

0 = ht + (h u)x + (h v)y, (8.3) 

38Provided the coefficients in the equation are smooth. 
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1 
0 = (h u)t + (h u2 + g h2)x + (h v u)y, (8.4) 

2 
1 

0 = (h v)t + (h u v)x + (h v2 + g h2)y, (8.5) 
2 

where h is the fluid depth, u is the x-flow velocity, v is the y-flow velocity, and g is the acceleration 

of gravity. The steady state (time independent) form of these equations is 

0 = (h u)x + (h v)y, (8.6) 

1 
0 = (h u2 + g h2)x + (h v u)y, (8.7) 

2 
1 

0 = (h u v)x + (h v2 + g h2)y. (8.8) 
2 

Answer the following questions: 

1. Under which conditions on (h, u, v) is (8.6 – 8.8) strictly39 hyperbolic? Use the Froude number 

F = (u2 + v2)/(g h) in your answer. You need F > 0 to even ask the question — WHY? 

2. When the characteristic equation has a double root, the system is not hyperbolic.40 Show this. 

Hint: The system is invariant under rotations. Hence, when computing the eigenvector(s), you 

can rotate the coordinate system so that v = 0 at the point of interest. 

3. The system always has (at least) one characteristic, which has a Riemann invariant. Find it. 

9 Transformations. 

9.1 Statement: Hodograph transformation (problem 01). 

The hodograph transformation reverses the roles of the independent and dependent variables. It is 

helpful when dealing with a quasi-linear first order nonlinear P.D.E. such that: 

a. The equation is homogeneous: all the terms involve exactly one derivative. 

b. The coefficients do not involve the independent variables. 

c. The number of dependent variables does not exceed the number of independent variables. 

In such cases the transformation can be used to linearize the P.D.E. The transformation is, in 

some vague sense, a generalization to P.D.E. of separation of variables. Namely, the solution of the 

39All the characteristic directions are distinct: the characteristic equation has three distinct roots.

40There is only one eigenvector associated with the double root.
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dy 
nonlinear equation = f(y) g(t) by separation of variables is equivalent to the following process: 

dt 
(1st) Introduce a new independent variable by ds = g dt, which transforms the equation into one 

dy 
with no dependence on the independent variable = f(y). (2nd) Invert the roles of the dependent 

ds 
ds 1 

and independent variables, to obtain the linear equation = . 
dy f(y) 

Example 1: scalar 1-st order evolution in one space dimension. 

Consider the following nonlinear equation, for the real valued function u = u(x, t), 

ut + c(u) ux = 0, where c = c(u) is some given function. (9.1) 

1-a. Do a hodograph transformation, and write the equation for x = X(u, t). This should give 

you a trivial equation. Write the general solution to this equation. How is this solution related 

to the solution to the initial value problem u(x, 0) = f(x) to (9.1), obtained by characteristics? 

1-b. Do the same for t = T (u, x). 

Example 2: scalar 1-st order evolution in two space dimensions. 

Find a transformation that linearizes the equation 

ut + a(u) ux + b(u) uy = 0, where a = a(u) and b = b(u) are some given functions. (9.2) 

Example 3: isentropic Gas Dynamics in one space dimension. 

The (inviscid) Euler equations of Gas Dynamics, in mass-Lagrangian coordinates, are as follows 

vt − uζ = 0, and ut + pζ = 0, (9.3) 

where v is the specific volume, u is the flow velocity, and p = p(v) is the pressure. Furthermore: 
dp 

a 2 = > 0 — with a > 0 the sound speed in mass-Lagrangian coordinates. −
dv 

3-a. Do a hodograph transformation, and write the equations that ζ = Z(v, u) and t = T (v, u) 

satisfy. This should give you a system of two, first order, linear equations in Z and T . 

3-b. Write the characteristic equations for the system that you obtained in 3-a. 

Recall that the system of equations in (9.3) is equivalent (for solutions without shocks) to the 

following Riemann invariant form: 

dζ 
u � b = constant along the characteristic curves = ±a, (9.4) 

dt 
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v 
where b = b(v) = a(s) ds. In particular, the solutions such that one of the Riemann variables 

u � b is identically constant (not just constant along each characteristic) are called simple waves. 

3-c. What is the relationship of the characteristics for the system that you found in 3-a, with the 

Riemann variables R± = R±(u, v) = u � b? 

3-d. Assume a simple wave solution to the system in (9.3). What is peculiar about the hodograph 

map (ζ, t) (u, v) in this case — what is the image in the (u, v) plane? Is there an inverse → 

map ζ = Z(v, u) and t = T (v, u), as assumed when doing the hodograph transformation? 

9.2 Statement: Gas Dynamics (Eulerian to Lagrangian formulation). 

The (inviscid) Euler equations of Gas Dynamics, in one space dimension, have the following form 

in the laboratory (Eulerian) frame41 

ρt + (ρ u)x = 0 (conservation of mass), 
⎫ 
⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎭ 

(ρ u)t + (ρ u2 + p)x = 0 (conservation of momentum), (9.5) 

(ρE)t + (ρE u + p u)x = 0 (conservation of energy), 

where ρ = ρ(x, t) is the mass density, u = u(x, t) is the flow velocity, p = p(x, t) is the pressure, 
1 

E = u 2 + e is the energy per unit mass, and e is the internal energy per unit mass — given by 
2 

an equation of state e = E(ρ, p). Of course: x is distance and t is time. 

In the special case of adiabatic (constant entropy) motion, we have 0 = T dS = de − p dv, where T 

is the temperature, S is the entropy, and v = 1/ρ is the specific volume. Then the equation of state 

specifies p as a function of ρ, and the system can be reduced to the first two equations above — the 

conservation of energy equation is not needed. 

Introduce the (mass) Lagrangian coordinate ζ = ζ(x, t) by 

x 
ζ = ρ(s, t) ds, (9.6) 

x ∗ 

dx∗ 
where x = x ∗(t) is the position of some (arbitrary) point in the gas — i.e.: = u(x ∗ , t). Then, 

dt 
as long as no vacuum state arises,42 the transformation from the Eulerian coordinates (x, t) to the 

41In the absence of body forces, such as gravity.

42So that ρ > 0 everywhere.
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(mass) Lagrangian coordinates (ζ, t) has an inverse, given by 

� ζ 
∗ x = x + v(z, t) dz, (9.7) 

0 

where we think of v as a function of ζ and t inside the integral — i.e.: v = v(ζ, t). 

Assume now that no vacuum state arises, and that the solutions are piece-wise smooth (i.e.: shocks, 

for example, are allowed). Then 

1. Prove the formula in (9.7) for the inverse. 

2. Let Z = Z(x, t) be the function defined by the right hand side in (9.6) — i.e.: ζ = Z(x, t). 

Show that 

Zx = ρ and Zt = −ρ u. (9.8) 

In particular: Zt + uZx = 0, so that Z is constant along the particle paths — this shows that, 

indeed, ζ is a Lagrangian coordinate. 

3. Let X = X(ζ, t) be the function defined by the right hand side in (9.7) — i.e.: x = X(ζ, t). 

Show that 

Xζ = v and Xt = u. (9.9) 

Again: ζ = constant should be a particle path, hence its Eulerian coordinate must move at 

the flow speed. 

4. Transform coordinates, from Eulerian to Lagrangian, in the equations given by (9.5). Show 

that, in Lagrangian coordinates, the equations have the conservation form 

vt uζ = 0 (conservation of volume), − 
⎫ 
⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎭ 

ut + pζ = 0 (conservation of momentum), (9.10) 

Et + (p u)ζ = 0 (conservation of energy). 

Notice how much more compact than in Eulerian coordinates the equations are. 

5. Derive directly, using conservation arguments, the equations in (9.10). 

Hints regarding item 4. It is when doing item 4 that you will have to pay particular attention to 

the fact that derivatives may fail to exist in the classical sense. The usual ways in which coordinate 

transformations are carried will not remain valid when discontinuities in the solution arise. I encourage 

you to (first) carry the transformation in the usual way (assuming that all the functions involved 
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have derivatives), to convince yourself that the calculations cease to make sense when discontinuities 

arise. For example, what is the meaning of stuff like u px when both u and p have a discontinuity 

at some point x = s? In this case px will have a Dirac’s delta function contribution at x = s and, 

since u has no unique value at x = s, the product u px has no meaning. 

In order to avoid the difficulties pointed out in the prior paragraph (when discontinuities in the 

solution are present) you should go back to the integral formulation of the conservation laws,43 and 

transform them directly. Namely, instead of (9.5), use: 

dt 
d 
�
� b 

ρ dx 

� 

= 
� 
(u − ȧ) ρ 

� 

x=a 
− 
� 
(u − ḃ) ρ 

� 

x=b 
(cons. of mass), 

a 

d 
�
� b 

�
� � � � 

ρ u dx = a) ρ u + p b) ρ u + p (cons. of momentum),
dt a 

(u − ˙
x=a 
− (u − ˙

x=b 

d 
�
� b 

�
� � � � 

dt a 
ρE dx = (u − ȧ) ρE + p u 

x=a 
− (u − ḃ) ρE + p u 

x=b 
(cons. of energy), 

for any interval a = a(t) < x < b = b(t) — and transform these into Lagrangian coordinates. You 

should find out that the conservation of mass transforms into a trivial equation in Lagrangian 

coordinates. On the other hand, the conservation of volume, which is trivial in Eulerian coordinates: 

d 
�
� b 

� 

dx = −ȧ+ b, ˙
dt a 

yields a non-trivial equation in Lagrangian coordinates. 

10 Wave Equations. 

10.1 Statement: Wave equations (problem 01). 

Consider an elastic (homogeneous) string under tension, tied at one end, initially at rest, and forced 

by a (small amplitude) harmonic shaking of the other end. To simplify the situation, assume that 

all the motion is restricted to happen in a plane. 

After a proper adimensionalization, the situation is modeled by the mathematical problem below 

for the wave equation in 1-D — where u = u(x, t) is the displacement from equilibrium of the string. 

utt − uxx = 0, for 0 < x < 1, and t > 0, (10.1) 

43Which remain valid even for discontinuous solutions. 
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with initial data u(x, 0) = ut(x, 0) = 0, and boundary conditions 

u(0, t) = 1− cos(ω t) and u(1, t) = 0. (10.2) 

FIND the solution to this problem, for the times 0 < t ≤ 4. Furthermore: note that the solution, 

while making sense in the classical sense (no need to invoke generalized function derivatives), is 

not infinitely differentiable. There are certain lines along which “singularities” occur. FIND these 

lines of singularity, and describe what the situation is along them (nature of the singularities) — 

the lines are, of course, characteristics. FINALLY: does anything special happen if ω = π? 

10.2 Statement: Wave equations (problem 02). 

Consider an elastic (homogeneous) string under tension, undergoing small amplitude oscillations, 

and assume that all the motion is restricted to happen in a plane. Under these conditions, and after 

a proper adimensionalization, the displacements u = u(x, t) from equilibrium of the string can be 

shown to satisfy the 1-D wave equation 

utt − uxx = 0, (10.3) 

to which appropriate initial data and boundary conditions must be applied to determine a unique 

solution. 

In the lectures we showed that the second order (in space and time) equation in (10.3) is equivalent 

to a system of two first order equations. We did this by introducing the variables v = ut and w = ux, 

for which it can be seen that 

vt − wx = 0 and wt − vx = 0 (10.4) 

apply — the first equation is (10.3) and the second follows from equality of cross-derivatives. On 

the other hand, the second equation in (10.4) guarantees that there is a u such that v = ut and 

w = ux, and then the first equation yields (10.3). 

Consider now the situation where the string is attached to an (homogeneous) “elastic bed”, instead 

of being free in space.44 In this case, in addition to the forces caused by the tension in the string, 

44For example: imagine a ribbon made of some elastic material, with one edge attached to a rigid surface, the 

other edge attached to the string, and thin enough that we can ignore its mass. 
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forces are generated by the bed — which are functions of the displacements u only. Thus the 

governing equation above in (10.3) must be modified to 

utt − uxx + g(u) = 0, (10.5) 

where g characterizes the elastic response by the bed. If Hooke’s law applies, then g = κ u — for 

some elastic constant κ > 0. 

By introducing appropriate variables, SHOW THAT the second order equation in (10.5) is equiv

alent to a first order system of two equations in two unknowns functions. 

Hint: because the function u appears in equation (10.5), the trick that we used for (10.3) does not 

work for (10.5). If you introduce v = ut and w = ux as new variables, you will also have to keep u, 

and then you will end up with three variables (not two). Instead, try introducing as a new variable 

an appropriate combination of ut and ux. 

Note that the approach that you develop here should work for any g = g(u). In particular, for 

g ≡ 0 it will give you a different (from the one used in the lectures) way to show that (10.3) is 

equivalent to a system of two first order equations. 

10.3 Statement: Wave equations (problem 03). 

This problem investigates the issue of the characteristics as the places where “weak” singu

larities of the solutions can occur — where by “weak” singularities we mean lack of smoothness 

in the solutions which is not strong enough to destroy their meaning as classical solutions. 

EXAMPLE: consider the linear first order scalar equation for u = u(x, y) 

a ux + b uy + c u = d, (10.6) 

where a = a(x, y), b = b(x, y), c = c(x, y), and d = d(x, y), are some given smooth functions, with 

a 2 + b2 = 0. Consider now a function u = u(x, y) and a curve φ(x, y) = 0 — where φ is smooth 

and has a non-zero gradient, such that u = u(x, y) is continuous and 

1. u has continuous partial derivatives where φ = 0, which have a continuous limit on each side 

of the curve — in other words: the graph of u is a “nice” surface, except that it has a crease 

along the given curve. Derivatives in directions parallel to the curve exist and are continuous 



67 Rosales 18.306 Problem List. 

everywhere, while derivatives in directions that cross the curve have a simple discontinuity as 

the curve is crossed. 

2. On each side of the curve, u satisfies equation (10.6). Because of item 1, the limits of the 

solution (as the curve is approached on each side) on the curve, also satisfy the equation. 

Such a u is a solution to equation (10.6) in the “classical” sense, but it has a lack of smoothness 

across the curve φ = 0 — which is as strong as it can be, while still allowing a solution in the 

classical sense. Question: are there any restrictions on what the curve φ = 0 can be? 

In order to answer the question in the prior paragraph, we introduce a local (curvilinear) coordinate 

system such that φ is one of the coordinate functions — this can always be done. So, let ψ = ψ(x, y) 

be a smooth function with non-zero gradient such that �φ and �ψ are not co-lineal, and re-write 

the equation using φ and ψ as independent variables. Then 

d = (a φx + b φy) uφ + (aψx + b ψy) uψ + c u, (10.7) 

which should apply for φ > 0 and φ < 0, with continuous limits as φ 0 from each side. Further→ 

more, from item 1 it follows that uψ is continuous everywhere, while uφ has a simple discontinuity 

at φ = 0. Thus taking the limit (from both sides φ > 0 and φ < 0) as φ 0 of the equation, and → 

then taking the difference of these two limits, we obtain 

0 = (a φx + b φy) [uφ] along φ = 0, (10.8) 

where [uφ] denotes the (non-zero) jump in uφ across the curve. Hence we obtain the following 

equation that must be satisfied by the curve 

0 = a φx + b φy along φ = 0. (10.9) 

Since φx dx + φy dy = 0 along the curve, it follows that 

a dy = b dx, (10.10) 

which is equivalent to the (parametric) equation for the characteristics obtained in the lectures (by 
dx dy 

other means); namely: = a and = b. 
ds ds 

THESE ARE YOUR TASKS IN THIS PROBLEM:
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PART I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


The arguments above appear to impose no restrictions on the curve φ = 0 if the singularities in u 

appear at higher order. This is not true. For example, assume that u has continuous derivatives up 

to second order, except that the second derivatives have simple discontinuities across φ = 0. Thus, 

it is the graph of (say) ux that has a crease along the curve. SHOW then that the curve must be a 

characteristic. Hint: Consider the equation that ux satisfies. 

PART II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


Consider the linear second order scalar equation for u = u(x, y) 

a uxx + 2 b uxy + c uy y = d, (10.11) 

where a = a(x, y), b = b(x, y), c = c(x, y), and d = d(x, y), are some given smooth functions, with 

a c − b2 �= 0. Using an argument similar to the one in (10.6 – 10.10), FIND the curves across 

which the solutions to the equation can have “weak” discontinuities — i.e.: the characteristics. In 

particular: 

II-1. Under which conditions on the coefficients a, b, . . . do such curves exist? 

II-2. What are the curves in the case uxx − uy y = 0 ? 

II-3. What happens in the case uxx + uy y = 0? 

Hint: In this case you have to assume that it is the second partial derivatives of u that have simple 

discontinuities across the curve φ = 0. 

11 Weak solutions and generalized functions. 

11.1 Statement: Weak solutions (problem 01). 

Let x f(x), −∞ < x < ∞, be a piece-wise C1 real valued function. Namely: there is a (finite) → 

number of points −∞ < x1 < x2 < . . . < xN < ∞ at which f is not defined, and 

1. f = f(x) has a continuous derivative in each of the intervals xn < x < xn+1, 0 ≤ n ≤ N , where 

x0 = −∞ and xN+1 = ∞. 

2. At each point xn, 1 ≤ n ≤ N , both the left f− = lim f(x) and right f+ = lim f(x)n n x→xn, x<xn x→xn, x>xn 

limits are defined and finite. The derivative f � has the same property. 
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Using the definition of a generalized function derivative, show that 

N 

f �(x) = ff 
� (x) + 

�

[f ]n δ(x − xn), (11.1) 
n=1 

where δ is the Dirac’s delta function, [f ]n = f+ − f− is the jump in the function at xn, and f � is n n f 

the “usual” derivative of f — which is only defined for x = , and is piece-wise continuous. � xn

Note: Assume that your test functions φ vanish outside some finite interval, and have infinitely 

many derivatives. That is φ ∈ C0 
∞ . 

11.2 Statement: Weak solutions (problem 02). 

Let ρ = ρ(x, t) be a piece-wise C1 real valued function defined on space-time. Specifically: assume 

that there is a smooth curve x = xs(t) such that ρ is defined everywhere but on this curve, and 

1. ρ = ρ(x, t) has a continuous (partial) derivatives for x < xs and x > xs. 

2. ρ = ρ(x, t) and its partial derivatives have both left and right (finite and continuous) limits 

along the curve x = xs(t). 

For any continuous function h = h(ρ), define h− and h+ as the left and right limits, respectively, of 

h along the curve x = xs(t). Namely: h− = lim h(ρ) and h+ = lim h(ρ). Furthermore, 
x→xs, x<xs x→xs, x>xs 

let [h] = h+ − h− be the jump in h across the curve. 

Using the definition of generalized function derivatives, show that: 

For any continuously differentiable functions f = f(ρ) and g = g(ρ), 

ft + gx = (ft + gx)f + (−σ [f ] + [g]) δ (x − xs(t)) , (11.2) 

where ( )f is used to indicate the standard derivatives — defined for x = xs only, δ is the Dirac · �
delta function, and σ = dxs/dt. 

Note 1: Assume that your test functions φ = φ(x, t) have infinitely many derivatives and vanish 

outside some bounded region in space-time. That is φ ∈ C0 
∞ . 

Note 2: The curve given by x = xs(t) need not be monotone. In other words, σ = σ(t) can vanish, 

switch signs, etc. 
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12 Well and ill posed problems. 

12.1 Statement: Ill posed laplacian problem. 

Consider the following problem involving Laplace’s equation 

uxx + uyy = 0, (12.1) 

on the strip 0 < x < 2 π and −∞ < y < ∞:


Given u(0, y) = f(y) and ux(0, y) = g(y), where f and g are smooth periodic functions, determine


u(2 π, y) = h(y).


Show that this is an ill-posed problem.


Hint: Consider what happens with high frequency perturbations.


12.2 Statement: Laplace equation (problem 01). 

Consider a thin, homogeneous, heat conducting sheet, insulated on the top and the bottom. If 

T = T (x, y, t) is the temperature in the sheet, then the conservation of heat (and Fick’s law) leads 

to the heat equation — which in non-dimensional units has the form 

Tt = ΔT = Txx + Tyy. (12.2) 

Let Ω be the region of space occupied by the sheet, and assume that along the boundary ∂Ω of this 

region the heat flux is known and given by some function, say: F = F (s) per unit length (where s 

is the arc-length along ∂Ω). 

The problem to be solved is then (12.2) inside Ω, with the boundary conditions on ∂Ω 

∂nT = ˆ = F (s), (12.3) n · �T 

where n̂ is the unit outside normal to ∂Ω. In particular, for steady state, we have Laplace’s equation 

in Ω 

0 = ΔT = Txx + Tyy, (12.4) 

with the Neumann conditions in (12.3). 
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1. Show that there is an integral condition that F must satisfy if the problem (12.3 – 12.4) has 

a solution. Hint: Gauss theorem. 

2. Give a physical interpretation to the condition in 1. Why do you need it, and what happens 

when it is not satisfied? 

3. The solution to (12.3 – 12.4), if there is one, is determined only up to an arbitrary additive 

constant. How would you determine this constant, and what is it related to — i.e.: knowledge 

of what physical quantity gives it to you? 

12.3 Statement: PDE Blow Up. 

The purpose of this problem is to investigate an example where smooth solutions to a 

PDE cease to exist after finite time. In the lectures (see the remark below) we considered the 

problem: 

ut + uux = 0 ,	 with initial data u(x, 0) = F (x) , (12.5) 

where


⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

• u = u(x, t) is a function of x (space) and t (time).


• ut and ux denote the partial derivatives of u with respect to t and x. 

The solution to problem (12.5) ceases to exist at a finite time 

We saw that:	 (the derivatives of u become infinite and, beyond that, u be- (12.6) 

comes multiple valued), whenever dF/dx is negative somewhere. 

Consider now the problem: 

ut + uux = −u , with initial data u(x, 0) = F (x) .	 (12.7) 

Show that the solution to this second problem ceases to exist at a finite time, provided 

that dF/dx < C < 0, where C is a finite (non-zero) constant. Again, what happens is 

that the derivatives become infinite. Calculate C. 

Hint: To show the result (quoted above) in class, we used two (related) approaches, both involving 

the characteristic curves. In the first we obtained the exact solution to the problem (in implicit form) 

and from that we obtained the result. The second approach went straight to the point and showed 
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that ux had to ”blow up” on some characteristic curve. Both techniques will work here too, but the 

second approach is much simpler (for the purposes of what you are being asked to show). 

Remark: In order to show the result in (12.6), we proceeded in two ways. 

(1-st). Introduce the characteristic curves in space-time, which — for equation (12.5), are defined 
dx du 

by = u(x, t). Equation (12.5) then yields = 0 along these curves, so we can write 
dt dt 

⎧ 
⎪⎪⎨ 

⎫ 
⎪⎪⎪⎬ x = ζ + F (ζ)t


⎫ 
⎪⎪⎬ 

dx 
= u and x(0) = ζ 

dt

= (12.8)
⇒


du
 ⎪⎪⎪⎭ 
⎪⎪⎩ 

⎪⎪⎭u = F (ζ)
= 0 

for each characteristic, which we label by the value x takes for t = 0 — namely: ζ. Thus, for this 

problem, the characteristics are straight lines in space-time, and along each of them u is constant. 

Clearly, if the initial data F is decreasing anywhere,45 then there will be characteristics that cross 

somewhere in space-time, for a finite time t > 0. But then the solution there would be multiple 

valued! The earliest time at which this happen would correspond to two infinitesimally distant (i.e. 

ζ and ζ + dζ) characteristics crossing, at which point the drivative ux would become −∞. 

Equation (12.8) has the following interpretation — in terms of what the shape of the solution (i.e. 

y = u(x, t), for each fixed time) does as a function of time. Each value of u propagates at its own 

speed, that happens to be u. Thus, in places where u is decreasing, the shape steepens (values 

behind catch-up to the values ahead) and, eventually, an infinite slope arises at some point. 

(2-nd). Introduce the characteristic curves, but now directly write an equation for how ux changes 

along each characteristic. By taking the x partial derivative of equation (12.5), it is easy to see that 

dw 2+ w = 0, where w = ux. (12.9) 
dt 

Along any characteristic where w starts negative, it reaches −∞ in a finite time. Hence (12.6) follows. 

THE END. 

dF 
45Namely: < 0 someplace. 

dx 

and u(0) = F (ζ)

dt





