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Abstract. In this paper we discuss and prove the Borel-Cantelli 
Lemma. We then show two interesting applications of the Borel-
Cantelli Lemma. These include a method by which one can profit 
from a series of games that individually have an expected value of 
zero, defying intuition regarding linearity of expectation, as well 
as displaying that a sequence of 100100 straight coin flips of heads 
will occur with probability one if one flips a fair coin into infinity. 

1. Introduction 

Consider an infinite sequence of games, where in game n one loses 2n 

dollars with probability 1 and win a dollar with probability 2n 
.

2n+1 2n+1 
Even though the expected value is 0, for all n, if we sum over n the 
probability that a person will lose in game n, we will find the total 
number of expected losses. For example, if we take the integral from 0 
to infinity for 1 dn, we will find that

2n+1  ∞  ∞1 log(2n + 1)  
dn = n −  

0 2n + 1 log 2 0 

log(2∞ + 1) log(20 + 1) 
= ∞− − 0 + 

log 2 log 2 
log 2 

= ∞ − ∞ − 0 + 
log 2 

= 1. 

We expect to lose a single time, even though we play into infinity and 
there always exists a non-zero probability of losing. We will explore 
this concept further by proving and utilizing the Borel-Cantelli Lemma, 
which states that if the sum of the individual probabilities for an infinite 
number of events is not infinite, then the number of events occurring 
as time goes to infinity is finite. For this paper, we mainly source the 
lecture notes of various university mathematics classes. 
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2. Borel-Cantelli 

The Borel-Cantelli Lemma states that if the sum of the probabilities 
of the events An is finite, then the set of all events that occur will also 
be finite. Note that no assumption of independence is required. 

Conversely, the Borel-Cantelli Lemma can be used to show that if 
the sum of the probabilities of the independent events An is infinite, 
then the set of all events that will occur that are repeated infinitely 
many times must occur with probability one. That is, one will achieve 
an infinite number of these events as n moves to infinity. It is impor
tant to recognize that this converse Lemma requires an assumption of 
independence. 

First, we will prove the finite case, where events only occur a finite 
number of times, even as n moves towards infinity. We use the notation 
i.o. to represent “infinitely often.” 

It is also important to understand the concepts of the limit superior 
and the limit inferior. The limit inferior and limit superior of a sequence 
can be thought of as the limiting bounds of that sequence, typically as 
that sequence is taken to infinity. The limit inferior is the lower bound 
as the sequence trends to infinity, and the limit superior is the upper 
bound. For example, the limit superior of f(x) = sin(x) as x → ∞ is 
1, while the limit inferior is -1. For our notation, we will refer to the 
limit superior as lim sup and the limit inferior as lim inf . 
We will prove this by showing that the probability of an event oc

curring infinite times as n trends to infinity is zero given the initial 
statement that the sum of the probabilities converges as n goes to in
finity, meaning that the sum of the probabilities for discrete events in 
the sequence of events is less than infinity. If the probability of an event 
occurring ever goes to zero as n increases towards infinity, then we have 
shown that the number of times this event can happen is finite. 

Lemma 2.1. Let An be a sequence of events, where an individual event 
occurs at time n with probability P (An). If the sum of the probabilities a∞of An is finite, such that n=1 P (An) < ∞, then the probability that 
infinitely many of these events occur is 0. That is, P (lim sup An) = 0. 

n→∞ 

Proof. Our goal is to prove that if 
∞0 

P (An) < ∞, 
n=1 

then 

P (Ani.o.) = 0. 
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This states that if the sum of the probabilities is less than infinity for 
an infinite sequence of events, then the number of events is guaranteed 
to be finite. In essence, we are proving that the probability of an event 
happening infinitely often is zero. 

P (Ani.o.) = P (lim sup An) 
n→∞ 

= lim P (∪∞ 
k=nAk) 

n→∞ 
∞0 

≤ lim P (Ak). 
n→∞ 

k=n 

The final summation goes to 0 as n goes to infinity because we are 
working under the assumption that the series converges. Therefore, if 
the final term goes to zero, then 

P (Ani.o.) ≤ 0. 

and we have proven our Lemma, as the probability of the event hap
pening infinitely often is zero. Probabilities cannot be negative. 

D 

For this lemma, the sequence of events does not have to be indepen
dent, a useful fact. 

Now we will show the converse, namely that if the sum of the prob
abilites of the independent events An is infinite, then the set of all 
outcomes that are repeated infintely many times must occur with prob
ability one. This Lemma differs from the previous in that it only holds 
for an independent sequence of events. 

Lemma 2.2. If the sum of the probabilities of an independent sequence a∞of events An is infinite, such that n=1 P r(An) > ∞, then the probabil
ity that infinitely many of them occur is 1. That is, P r(limn→∞sup An) = 
1. 

Proof. The Lemma states that if 
∞0 

P (An) = ∞, 
n=1 

then the events will occur infinitely often as n goes to infinity, or 

P (Ani.o.) = 1. 

We can use the complement of the probability that an event occurs 
infinitely often, or 

1 − P (Ani.o.), 
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to prove our Lemma, as well as the laws of independence, the limit infe
rior of the sequence, and the intersection of all complementary events. 
We are proving that the probability of an event happening only a finite 
number of times is zero. By proving this, we have proven our lemma 
that an event occurs an infinite number of times as n goes to infinity. 

We recognize that 

1 − P (Ani.o.) = P (Ani.o.)
c 

Ac = P (lim inf ) 
n→∞ n 

= lim P (∩k
∞ 
=nAk 

c ). 
n→∞ 

where the c superscript represents the complementary probability. 
Because the events are independent with respect to each other, we 

can state that the complementary sequence of events are also indepen
dent. Therefore, because joint probabilities are simply the product of 
individual event probabilities, we see that for every n, 

P (∩∞ Ak 
c ) = lim P (∩N Ac 

k)k=n k=n
N→∞ 

NN 
= lim P (Ac 

k)
N→∞ 

k=n 

NN 
= lim [1 − P (Ak)]

N→∞ 
k=n 

NN 
≤ lim exp[−P (Ak)]

N→∞ 
k=n 

N0 
= lim exp[− P (Ak)]

N→∞ 
k=n 

= 0. 

We know that the penultimate term is equal to 0 because the series 
diverges, an assumption for this converse Lemma. The exponential 
function approaches 0 as the exponent approaches negative infinity, 
which the negative summation function does in the penultimate term. 

Therefore, the probability of an event occurring a finite number of 
times is zero and we have proven the converse Lemma for an indepen
dent sequence of events. D 

The result leads to an interesting corollary of these two Lemmas, 
sometimes known as the “0-1” law. 
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Corollary 2.3. If {An} is a sequence of independent events in a n≥1 

probability space, then either P (A(i.o.)) = 0, the E(N) < ∞ case, or 
P (A(i.o.)) = 1, the E(N) = ∞ case, where N denotes the total number 
of An to occur: 

∞0 
N = In 

n=1 

where In denotes the indicator random variable for the event An. 

It is easy to see the reasoning for the name, “0-1” law. Either the sum 
of the probabilities associated with the sequence of events is infinite, or 
it is not. Either one can expect the number of times an event happens 
to be infinite as time goes to infinity, or one can expect it to be finite. 
The outcome is binary; the probability of the event occurring into 
infinity is either 0 or 1 depending on whether the probability function 
converges or diverges towards infinity. 

3. Application of the Borel-Cantelli Lemma 

We can apply the Borel-Cantelli Lemma to an interesting situation 
where one can expect to profit from a series of games that, individually, 
have an expected value of 0. This should be counter-intuitive; because 
of linearity of expectation, the total expectancy of the series of games 
is still zero. 

Take, for example, an infinite sequence of games, where in game 
n one loses 2n dollars with probability 1 and wins a dollar with 

2n+1 

probability 2n 
. This implies that one will lose a great deal of money 

2n+1 
a little bit of the time, and win a little bit of money most of the time. 
We can see that the expectation of any individual game is 

−2n 2n 

+ = 0. 
2n + 1 2n + 1 

No matter which game in the series that one is playing, the expected 
value will always be zero. This is where the Borel-Cantelli lemma makes 
things interesting. We recognize that the expected number of losses is 
the sum over n of the probability that an individual will lose in game 
n. We showed in the introduction that 

∞ 1 
dn = 1. 

2n + 1 0 

The function 1 will be positive and decreasing for any n, 0 ≤ n ≤
2n+1 

∞. For this reason, the definite integral of the function between 0 and 
infinity will be greater than the sum for every integer n between 1 and 
infinity. Therefore, 
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∞

n=1 

0 ∞1 1 ≤ dn ≤ 1 < ∞ 
2n + 1 2n + 1 0 

and accordingly is finite. A numerical approximation of 
∞0 1
 

2n + 1 
n=1 

using java yields a sum of approximately 0.764, which, as we expected, 
is less than 1. 

Because the sum of the probabilities is finite, it follows that with 
probability one the person will only lose a finite number of times, as 
shown by the Borel-Cantelli lemma. Therefore, the amount of money 
won by the player goes to infinity, as they win infinite times and lose 
only finite times! It is inconsequential that when the player loses, they 
lose a large amount, and that when they win they only win a small 

0 

amount. 
The key to this type of situation is that the probability of losing 

money converges as n goes to infinity. In this case, the probability 
summation of losing money converges, whereas if the denominator con
sisted of the term n, such as the probability of a loss occurring with 
p = 

n 
1 , then the probability summation does not converge as n goes to 

infinity, and the player will face a series of games from which they will 
not be able to profit. 

∞
1 
= ∞ 

n 

0 

n=1 

And by the Borel-Cantelli lemma, losses will also occur an infinite 
number of times as one plays into infinity. Do not be duped into playing 
a losing (or fair) game when the probability summation of losing does 
not converge as n goes to infinity. 

4. Application of the Converse Borel-Cantelli Lemma 

We can also use the converse Lemma for some nice applications. One 
such application involves the possibility of flipping 100100 heads in a 
row with a fair coin. We want to calculate P(E), where E is defined as 
the event that a run of 100100 heads, an extremely improbable event, 
occurs in an infinite sequence of independent coin tosses. Because En 

are independent events, we find that the probability of the sequence 
occurring in the nth block of 100100 coin tosses is 

∞
1
 

P (En = > 0) ⇒ P (En) = ∞. 
(2100)100 

n=1 
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By the converse Borel-Cantelli Lemma, we recognize that if the sum 
of the probabilities of the event sequence is infinite, then 

P (E) = 1. 

Therefore, the probability that a run of 100100 heads occurs in an infi
nite sequence of independent coin tosses is 1. 

5. Conclusion 

We have proven the Borel-Cantelli Lemma, showing that if the sum 
of the probabilities of events is not infinite, as we sum over an infi
nite number of events, then the expected number of times that the 
event occurs is finite. We then proved the converse Lemma for an in
dependent sequence of events. We have also displayed how these useful 
Lemmas can apply to interesting situations, such as one where we can 
find a strategy to profit from a series of zero expectation games, or 
recognize that enough monkeys typing away at enough typewriters will 
eventually produce Homer’s Odyssey. 
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