Solution to Problems for the 1-D Wave Equation 18.303 Linear Partial Differential Equations

Matthew J. Hancock

Fall 2006

1 Problem 1

(i) Suppose that an "infinite string" has an initial displacement

$$
u(x, 0)=f(x)=\left\{\begin{array}{cc}
x+1, & -1 \leq x \leq 0 \\
1-2 x, & 0 \leq x \leq 1 / 2 \\
0, & x<-1 \text { and } x>1 / 2
\end{array}\right.
$$

and zero initial velocity $u_{t}(x, 0)=0$. Write down the solution of the wave equation

$$
u_{t t}=u_{x x}
$$

with ICs $u(x, 0)=f(x)$ and $u_{t}(x, 0)=0$ using D'Alembert's formula. Illustrate the nature of the solution by sketching the $u x$-profiles $y=u(x, t)$ of the string displacement for $t=0,1 / 2,1,3 / 2$.

Solution: D'Alembert's formula is

$$
u(x, t)=\frac{1}{2}\left(f(x-t)+f(x+t)+\int_{x-t}^{x+t} g(s) d s\right)
$$

In this case $g(s)=0$ so that

$$
\begin{equation*}
u(x, t)=\frac{1}{2}(f(x-t)+f(x+t)) \tag{1}
\end{equation*}
$$

The problem reduces to adding shifted copies of $f(x)$ and then plotting the associated $u(x, t)$. To determine where the functions overlap or where $u(x, t)$ is zero, we plot the characteristics $x \pm t=-1$ and $x \pm t=1 / 2$ in the space time plane ($x t$) in Figure 1.

For $t=0$, (1) becomes

$$
u(x, 0)=\frac{1}{2}(f(x)+f(x))=f(x)
$$

Figure 1: Sketch of characteristics for 1(a).

For $t=1 / 2$, (1) becomes

$$
u(x, t)=\frac{1}{2}\left(f\left(x-\frac{1}{2}\right)+f\left(x+\frac{1}{2}\right)\right)
$$

Note that

$$
\begin{aligned}
f\left(x-\frac{1}{2}\right) & =\left\{\begin{array}{cc}
\left(x-\frac{1}{2}\right)+1, & -1 \leq\left(x-\frac{1}{2}\right) \leq 0 \\
1-2\left(x-\frac{1}{2}\right), & 0 \leq\left(x-\frac{1}{2}\right) \leq 1 / 2 \\
0, & \left(x-\frac{1}{2}\right)<-1 \text { and }\left(x-\frac{1}{2}\right)>1 / 2
\end{array}\right. \\
& =\left\{\begin{array}{cc}
x+\frac{1}{2}, & -\frac{1}{2} \leq x \leq \frac{1}{2} \\
2-2 x, & \frac{1}{2} \leq x \leq 1 \\
0, & x<-\frac{1}{2} \text { and } x>1
\end{array}\right.
\end{aligned}
$$

and similarly,

$$
f\left(x+\frac{1}{2}\right)=\left\{\begin{array}{cc}
x+\frac{3}{2}, & -\frac{3}{2} \leq x \leq-\frac{1}{2} \\
-2 x, & -\frac{1}{2} \leq x \leq 0 \\
0, & x<-\frac{3}{2} \text { and } x>0
\end{array}\right.
$$

Thus, over the region $-\frac{1}{2} \leq x \leq 0$ we have to be careful about adding the two
functions; in the other regions either one or both functions are zero. We have

$$
\begin{aligned}
u\left(x, \frac{1}{2}\right) & =\frac{1}{2}\left(f\left(x-\frac{1}{2}\right)+f\left(x+\frac{1}{2}\right)\right) \\
& =\left\{\begin{array}{cc}
\frac{x}{2}+\frac{3}{4}, & -\frac{3}{2} \leq x \leq-\frac{1}{2} \\
-\frac{x}{2}+\frac{1}{4}, & -\frac{1}{2} \leq x \leq 0 \\
\frac{x}{2}+\frac{1}{4}, & 0 \leq x \leq \frac{1}{2} \\
1-x, & \frac{1}{2} \leq x \leq 1 \\
0, & x<-\frac{3}{2} \text { and } x>1
\end{array}\right.
\end{aligned}
$$

For $t=1$, your plot of the characteristics shows that $f(x-1)$ and $f(x+1)$ do not overlap, so you just have to worry about the different regions. Note that

$$
\begin{aligned}
& f(x+1)=\left\{\begin{array}{cc}
(x+1)+1, & -1 \leq x+1 \leq 0 \\
1-2(x+1), & 0 \leq x+1 \leq 1 / 2 \\
0, & x+1<-1 \text { and } x+1>1 / 2
\end{array}\right. \\
&=\left\{\begin{array}{cc}
x+2, & -2 \leq x \leq-1 \\
-1-2 x, & -1 \leq x \leq-1 / 2 \\
0, & x<-2 \text { and } x>-1 / 2
\end{array}\right. \\
& f(x-1)=\left\{\begin{array}{cc}
x, & 0 \leq x \leq 1 \\
3-2 x, & 1 \leq x \leq 3 / 2 \\
0, & x<0 \text { and } x>3 / 2
\end{array}\right.
\end{aligned}
$$

so that

$$
\begin{aligned}
& u(x, 1)=\frac{1}{2}(f(x-1)+f(x+1)) \\
& =\left\{\begin{array}{cc}
\frac{x}{2}+1, & -2 \leq x \leq-1 \\
-\frac{1}{2}-x, & -1 \leq x \leq-1 / 2 \\
\frac{x}{2}, & 0 \leq x \leq 1 \\
\frac{3}{2}-x, & 1 \leq x \leq 3 / 2 \\
0, & x<-2,
\end{array} \quad-1 / 2<x<0, \text { and } x>3 / 2\right.
\end{aligned}
$$

For $t=3 / 2$, the forward and backward waves are even further apart, and

$$
\begin{gathered}
f\left(x-\frac{3}{2}\right)=\left\{\begin{array}{cc}
x-\frac{1}{2}, & \frac{1}{2} \leq x \leq \frac{3}{2} \\
4-2 x, & \frac{3}{2} \leq x \leq 2 \\
0, & x<\frac{1}{2} \text { and } x>2
\end{array}\right. \\
f\left(x+\frac{3}{2}\right)=\left\{\begin{array}{cc}
x+\frac{5}{2}, & -\frac{5}{2} \leq x \leq-\frac{3}{2} \\
-2-2 x, & -\frac{3}{2} \leq x \leq-1 \\
0, & x<-\frac{5}{2} \text { and } x>-1
\end{array}\right.
\end{gathered}
$$

Figure 2: Plot of $u\left(x, t_{0}\right)$ for $t_{0}=0,1 / 2,1,3 / 2$ for 1(a).
and hence

$$
\begin{aligned}
u\left(x, \frac{3}{2}\right) & =\frac{1}{2}\left(f\left(x-\frac{3}{2}\right)+f\left(x+\frac{3}{2}\right)\right) \\
& =\left\{\begin{array}{cc}
\frac{x}{2}+\frac{5}{4}, & -\frac{5}{2} \leq x \leq-\frac{3}{2}, \\
-1-x, & -\frac{3}{2} \leq x \leq-1, \\
\frac{x}{2}-\frac{1}{4}, & \frac{1}{2} \leq x \leq \frac{3}{2}, \\
2-x, & \frac{3}{2} \leq x \leq 2, \\
0, & x<-\frac{5}{2}, \\
-1<x<\frac{1}{2}, \text { and } x>2
\end{array}\right.
\end{aligned}
$$

The solution $u\left(x, t_{0}\right)$ is plotted at times $t_{0}=0,1 / 2,1,3 / 2$ in Figure 2. A 3D version of $u(x, t)$ is plotted in Figure 3.
(ii) Repeat the procedure in (i) for a string that has zero initial displacement but is given an initial velocity

$$
u_{t}(x, 0)=g(x)=\left\{\begin{array}{cc}
-1, & -1 \leq x<0 \\
1, & 0 \leq x \leq 1 \\
0, & x<-1 \text { and } x>1
\end{array}\right.
$$

Solution: D'Alembert's formula is

$$
u(x, t)=\frac{1}{2}\left(f(x-t)+f(x+t)+\int_{x-t}^{x+t} g(s) d s\right)
$$

Figure 3: 3D version of $u(x, t)$ for $1(\mathrm{a})$.

In this case $f(s)=0$ so that

$$
u(x, t)=\frac{1}{2} \int_{x-t}^{x+t} g(s) d s
$$

The problem reduces to noting where $x \pm t$ lie in relation to ± 1 and evaluating the integral. These characteristics are plotted in Figure 1 in the notes.

You can proceed in two ways. First, you can draw two more characterstics $x \pm t=0$ so you can decide where the integration variable s is with respect to zero, and hence if $g(s)=-1$ or 1 . The second way is to note that for $a<b$ and $|a|,|b|<1$,

$$
\int_{a}^{b} g(s) d s=|b|-|a|
$$

for positive and negative a, b. I'll use the second method; the answers you get from the first are the same.

In Region R_{1},

$$
|x \pm t| \leq 1
$$

and hence there are 3 cases: $x-t<0, x$

$$
\begin{aligned}
u(x, t) & =\frac{1}{2} \int_{x-t}^{x+t} g(s) d s \\
& =\frac{1}{2}(|x+t|-|x-t|)
\end{aligned}
$$

In Region $R_{2}, x+t>1$ and $-1<x-t<1$, so that

$$
\begin{aligned}
u(x, t) & =\frac{1}{2}\left(\int_{x-t}^{1}+\int_{1}^{x+t}\right) g(s) d s=\frac{1}{2} \int_{x-t}^{1} g(s) d s \\
& =\frac{1}{2}(1-|x-t|)
\end{aligned}
$$

In Region $R_{3}, x-t<-1$ and $-1<x+t<1$, so that

$$
\begin{aligned}
u(x, t) & =\frac{1}{2}\left(\int_{x-t}^{-1}+\int_{-1}^{x+t}\right) g(s) d s=\frac{1}{2} \int_{-1}^{x+t} g(s) d s=\frac{1}{2}(|x+t|-|-1|) \\
& =\frac{1}{2}(|x+t|-1)
\end{aligned}
$$

In Region $R_{4}, x+t>1$ and $x-t<-1$, so that

$$
\begin{aligned}
u(x, t) & =\frac{1}{2}\left(\int_{x-t}^{-1}+\int_{-1}^{1}+\int_{1}^{x+t}\right) g(s) d s \\
& =\frac{1}{2} \int_{-1}^{1} g(s) d s=\frac{1}{2}(-1+1) \\
& =0
\end{aligned}
$$

In Region $R_{5}, x+t<-1$ and hence $u(x, t)=0$. In region $R_{6}, x-t>1$, so that $u(x, t)=0$.

At $t=0$,

$$
u(x, 0)=\frac{1}{2} \int_{x}^{x} g(s) d s=0
$$

At $t=1 / 2$, the regions R_{n} are given in the notes and

$$
u\left(x, \frac{1}{2}\right)=\left\{\begin{array}{cc}
\frac{1}{2}\left(\left|x+\frac{1}{2}\right|-\left|x-\frac{1}{2}\right|\right), & x \in R_{1}=\left[-\frac{1}{2}, \frac{1}{2}\right] \\
\frac{1}{2}\left(1-\left|x-\frac{1}{2}\right|\right), & x \in R_{2}=\left[\frac{1}{2}, \frac{3}{2}\right] \\
\frac{1}{2}\left(\left|x+\frac{1}{2}\right|-1\right), & x \in R_{3}=\left[-\frac{3}{2},-\frac{1}{2}\right] \\
0, & x \in R_{5}, R_{6}=\{|x|>3 / 2\}
\end{array}\right.
$$

The absolute values are easy to resolve (i.e. write without them) in this case. For example, for $x \in[-1 / 2,1 / 2]$, we have $|x-1 / 2|=-(x-1 / 2)$. Thus,

$$
u\left(x, \frac{1}{2}\right)=\left\{\begin{array}{cc}
x, & x \in R_{1}=\left[-\frac{1}{2}, \frac{1}{2}\right] \\
\frac{3}{4}-\frac{x}{2}, & x \in R_{2}=\left[\frac{1}{2}, \frac{3}{2}\right] \\
-\frac{3}{4}-\frac{x}{2}, & x \in R_{3}=\left[-\frac{3}{2},-\frac{1}{2}\right] \\
0, & x \in R_{5}, R_{6}=\{|x|>3 / 2\}
\end{array}\right.
$$

At $t=1$, the regions R_{n} are given in the notes and

$$
u(x, 1)=\left\{\begin{array}{cc}
\frac{1}{2}(1-|x-1|), & x \in R_{2}=[0,2], \\
\frac{1}{2}(|x+1|-1), & x \in R_{3}=[-2,0] \\
0, & x \in R_{5}, R_{6}=\{|x|>3 / 2\}
\end{array}\right.
$$

You could leave your answer like this, or write it without absolute values (have to divide $[0,2]$ and $[-2,0]$ into cases):

$$
u(x, 1)=\left\{\begin{array}{cc}
x / 2, & x \in[0,1], \\
\frac{1}{2}(2-x), & x \in[1,2] \\
-\frac{1}{2}(x+2) & x=[-2,-1] \\
x / 2, & x=[-1,0] \\
0, & x \in R_{5}, R_{6}=\{|x|>3 / 2\}
\end{array}\right.
$$

At $t=3 / 2$, the regions R_{n} are not given explicitly, but can be found from Figure 1 in the notes by nothing where the line $t=3 / 2$ crosses each region:

$$
u\left(x, \frac{3}{2}\right)=\left\{\begin{array}{cc}
\frac{1}{2}\left(1-\left|x-\frac{3}{2}\right|\right), & x \in R_{2}=\left[\frac{1}{2}, \frac{5}{2}\right] \\
\frac{1}{2}\left(\left|x+\frac{3}{2}\right|-1\right), & x \in R_{3}=\left[-\frac{5}{2},-\frac{1}{2}\right] \\
0, & x \in R_{4}, R_{5}, R_{6}=\{|x|>5 / 2 \text { or }|x|<1 / 2\}
\end{array}\right.
$$

Again, you could leave your answer like this, or write it without absolute values (have to divide $[1 / 2,5 / 2]$ and $[-5 / 2,-1 / 2]$ into cases):

$$
u\left(x, \frac{3}{2}\right)=\left\{\begin{array}{cc}
\frac{1}{2}\left(x-\frac{1}{2}\right), & x \in R_{2}=\left[\frac{1}{2}, \frac{3}{2}\right] \\
\frac{1}{2}\left(\frac{5}{2}-x\right), & x \in R_{2}=\left[\frac{3}{2}, \frac{5}{2}\right] \\
-\frac{1}{2}\left(x+\frac{5}{2}\right), & x \in R_{3}=\left[-\frac{5}{2},-\frac{3}{2}\right] \\
\frac{1}{2}\left(x+\frac{1}{2}\right), & x \in R_{3}=\left[-\frac{3}{2},-\frac{1}{2}\right] \\
0, & x \in R_{4}, R_{5}, R_{6}=\{|x|>5 / 2 \text { or }|x|<1 / 2\}
\end{array}\right.
$$

The solution $u\left(x, t_{0}\right)$ is plotted at times $t_{0}=0,1 / 2,1,3 / 2$ in Figure 4.

2 Problem

(i) For an infinite string (i.e. we don't worry about boundary conditions), what initial conditions would give rise to a purely forward wave? Express your answer in terms of the initial displacement $u(x, 0)=f(x)$ and initial velocity $u_{t}(x, 0)=g(x)$ and their derivatives $f^{\prime}(x), g^{\prime}(x)$. Interpret the result intuitively.

Solution: Recall in class that we write D'Alembert's solution as

$$
\begin{equation*}
u(x, t)=P(x-t)+Q(x+t) \tag{2}
\end{equation*}
$$

Figure 4: Plot of $u\left(x, t_{0}\right)$ for $t_{0}=0,1 / 2,1,3 / 2$ for $1(\mathrm{~b})$.
where

$$
\begin{align*}
& Q(x)=\frac{1}{2}\left(f(x)+\int_{0}^{x} g(s) d s+Q(0)-P(0)\right) \tag{3}\\
& P(x)=\frac{1}{2}\left(f(x)-\int_{0}^{x} g(s) d s-Q(0)+P(0)\right) \tag{4}
\end{align*}
$$

To only have a forward wave, we must have

$$
Q(x)=\text { const }=q_{1}
$$

Substituting (3) gives

$$
Q(x)=q_{1}=\frac{1}{2}\left(f(x)+\int_{0}^{x} g(s) d s+Q(0)-P(0)\right)
$$

Differentiating in x gives

$$
0=\frac{1}{2}\left(\frac{d f}{d x}+g(x)\right)
$$

Thus

$$
\begin{equation*}
g(x)=-\frac{d f}{d x} \tag{5}
\end{equation*}
$$

Substituting (5) into (3) gives

$$
Q(x)=\frac{1}{2}(f(0)+Q(0)-P(0))
$$

and setting $x=0$ yields $f(0)-P(0)=Q(0)$. Substituting this and (5) into (4) gives

$$
P(x)=\frac{1}{2}(2 f(x)-f(0)-Q(0)+P(0))=f(x)
$$

and hence

$$
u(x, t)=f(x-t) .
$$

The displacement $u(x, t)$ only contains the forward wave! Intuitively, we have set the initial velocity of the string in such a way, given by Eq. (5), as to cancel the backward wave.
(ii) Again for an infinite string, suppose that $u(x, 0)=f(x)$ and $u_{t}(x, 0)=g(x)$ are zero for $|x|>a$, for some real number $a>0$. Prove that if $t+x>a$ and $t-x>a$, then the displacement $u(x, t)$ of the string is constant. Relate this constant to $g(x)$.

Solution: D'Alembert's solution for the wave equation is

$$
u(x, t)=\frac{1}{2}(f(x-t)+f(x+t))+\frac{1}{2} \int_{x-t}^{x+t} g(s) d s
$$

If $x+t>a$ and $t-x>a$ (this is the Region $R_{4}!$), then $|x+t|>a$ and $|x-t|>a$, so that $f(x \pm t)=0$. Furthermore, with $x-t<-a$ and $x+t>a$ we have

$$
\int_{x-t}^{x+t} g(s) d s=\int_{-a}^{a} g(s) d s=\int_{-\infty}^{\infty} g(s) d s=c_{a}
$$

Thus c_{a} is just the area under the curve $g(x)$, and

$$
u(x, t)=\frac{c_{a}}{2}, \quad x+t>a, \quad t-x>a .
$$

3 Problem

Consider a semi-infinite vibrating string. The vertical displacement $u(x, t)$ satisfies

$$
\begin{align*}
u_{t t} & =u_{x x}, \quad x \geq 0, \quad t \geq 0 \\
u(0, t) & =0, \quad t \geq 0 \tag{6}\\
u(x, 0) & =f(x), \quad \frac{\partial u}{\partial t}(x, 0)=g(x), \quad x \geq 0
\end{align*}
$$

The BC at infinity is that $u(x, t)$ must remain bounded as $x \rightarrow \infty$.
(a) Show that D'Alembert's formula solves (6) when $f(x)$ and $g(x)$ are extended to be odd functions.

Solution: Let $\hat{f}(x)$ and $\hat{g}(x)$ be the odd extensions of $f(x)$ and $g(x)$, respectively,

$$
\hat{f}(x)=\left\{\begin{array}{cc}
f(x), & x \geq 0 \\
-f(-x), & x<0
\end{array}, \quad \hat{g}(x)=\left\{\begin{array}{cc}
g(x), & x \geq 0 \\
-g(-x), & x<0
\end{array}\right.\right.
$$

You can check for yourself that $\hat{f}(x)$ and $\hat{g}(x)$ are odd functions, i.e. $\hat{f}(-x)=-\hat{f}(x)$ and $\hat{g}(-x)=-\hat{g}(x)$. We now write D'Alembert's solution with $\hat{f}(x)$ and $\hat{g}(x)$ replacing $f(x)$ and $g(x)$:

$$
\begin{equation*}
u(x, t)=\frac{1}{2}\left(\hat{f}(x-t)+\hat{f}(x+t)+\int_{x-t}^{x+t} \hat{g}(s) d s\right) \tag{7}
\end{equation*}
$$

Eq. (7) is D'Alembert's solution for the following wave problem on the infinite string:

$$
\begin{aligned}
u_{t t} & =u_{x x}, \quad-\infty<x<\infty, \quad t \geq 0 \\
u(x, 0) & =\hat{f}(x), \quad \frac{\partial u}{\partial t}(x, 0)=\hat{g}(x), \quad-\infty<x<\infty .
\end{aligned}
$$

Hence we know (7) satisfies the wave equation, by the way we found D'Alembert's formula. Of course, you can check that directly:

$$
\begin{aligned}
u_{x} & =\frac{1}{2}\left(\hat{f}^{\prime}(x-t)+\hat{f}^{\prime}(x+t)+\hat{g}(x+t)-\hat{g}(x-t)\right) \\
u_{x x} & =\frac{1}{2}\left(\hat{f}^{\prime \prime}(x-t)+\hat{f}^{\prime \prime}(x+t)+\hat{g}^{\prime}(x+t)-\hat{g}^{\prime}(x-t)\right) \\
u_{t} & =\frac{1}{2}\left(\hat{f}^{\prime}(x-t)(-1)+\hat{f}^{\prime}(x+t)+\hat{g}(x+t)-\hat{g}(x-t)(-1)\right) \\
u_{t t} & =\frac{1}{2}\left(\hat{f}^{\prime \prime}(x-t)(-1)^{2}+\hat{f}^{\prime \prime}(x+t)+\hat{g}^{\prime}(x+t)-\hat{g}^{\prime}(x-t)(-1)^{2}\right)
\end{aligned}
$$

Thus $u_{t t}=u_{x x}$. Also, for $x \geq 0$,

$$
\begin{aligned}
u(x, 0) & =\hat{f}(x)=f(x) \\
u_{t}(x, 0) & =\hat{g}(x)=g(x)
\end{aligned}
$$

Thus (7) satisfies the ICs. Lastly,

$$
u(0, t)=\frac{1}{2}\left(\hat{f}(-t)+\hat{f}(t)+\int_{-t}^{t} \hat{g}(s) d s\right)
$$

But since \hat{f} is odd, $\hat{f}(-t)=-\hat{f}(t)$ and since $\hat{g}(s)$ is odd, the integral of $\hat{g}(s)$ over a region symmetric about the origin is zero! Hence

$$
u(0, t)=\frac{1}{2}(-\hat{f}(t)+\hat{f}(t)+0)=0
$$

Figure 5: Plot of characteristics for 3(b).
which verifies (7) satisfies the fixed string $(u=0) \mathrm{BC}$ at $x=0$.
(b) Let

$$
f(x)=\left\{\begin{array}{cc}
\sin ^{2}(\pi x), & 1 \leq x \leq 2 \\
0, & 0 \leq x \leq 1, \quad x \geq 2
\end{array}\right.
$$

and $g(x)=0$ for $x \geq 0$. Sketch u vs. x for $t=0,1,2,3$.
Solution: D'Alembert's solution reduces to

$$
u(x, t)=\frac{1}{2}(\hat{f}(x-t)+\hat{f}(x+t))
$$

Solving this reduces to finding where $x-t$ and $x+t$ are and whether they are negative. The important characteristics are $x \pm t= \pm 1, \pm 2$. A drawing is useful. The characteristics are plotted in Figure 5 and the solution $u\left(x, t_{0}\right)$ at times $t_{0}=0,1,2,3$ in Figure 6.

Figure 6: Plot of $u\left(x, t_{0}\right)$ for $t_{0}=0,1,2,3$ for $3(\mathrm{~b})$.

4 Problem 4

The acoustic pressure in an organ pipe obeys the 1-D wave equation (in physical variables)

$$
p_{t t}=c^{2} p_{x x}
$$

where c is the speed of sound in air. Each organ pipe is closed at one end and open at the other. At the closed end, the BC is that $p_{x}(0, t)=0$, while at the open end, the BC is $p(l, t)=0$, where l is the length of the pipe.
(a) Use separation of variables to find the normal modes $p_{n}(x, t)$.
(b) Give the frequencies of the normal modes and sketch the pressure distribution for the first two modes.
(c) Given initial conditions $p(x, 0)=f(x)$ and $p_{t}(x, 0)=g(x)$, write down the general initial boundary value problem (PDE, BCs, ICs) for the organ pipe and determine the series solutions.

Solution: Separate variables

$$
p_{n}(x, t)=X(x) T(t)
$$

so that the PDE becomes

$$
\frac{T^{\prime \prime}}{c^{2} T}=\frac{X^{\prime \prime}}{X}
$$

and since the left side is a function of t only and the right a function of x only, then both sides equal a constant $-\lambda$:

$$
\frac{T^{\prime \prime}}{c^{2} T}=\frac{X^{\prime \prime}}{X}=-\lambda
$$

The boundary conditions are

$$
0=\frac{\partial p}{\partial x}(0, t)=X^{\prime}(0) T(t), \quad 0=p(l, t)=X(l) T(t)
$$

For a non-trivial solution, we must have $X^{\prime}(0)=0$ and $X(l)=0$. We obtain the Sturm Liouville problem

$$
X^{\prime \prime}+\lambda X=0 ; \quad X^{\prime}(0)=0=X(l)
$$

By replacing x with x / l in problem 4 on assignment 1 , the eigenfunctions and eigenvalues are

$$
X_{n}(x)=\cos \left(\frac{2 n-1}{2} \pi \frac{x}{l}\right), \quad \lambda_{n}=\frac{(2 n-1)^{2} \pi^{2}}{4 l^{2}}, \quad n=1,2,3, \ldots
$$

The corresponding time functions are

$$
T_{n}(t)=\alpha_{n} \cos \left(c \sqrt{\lambda_{n}} t\right)+\beta_{n} \sin \left(c \sqrt{\lambda_{n}} t\right)
$$

Thus the normal modes are

$$
\begin{aligned}
p_{n}(x, t) & =X_{n}(x) T_{n}(t) \\
& =\cos \left(\frac{2 n-1}{2} \pi \frac{x}{l}\right)\left(\alpha_{n} \cos \left(\frac{2 n-1}{2 l} \pi c t\right)+\beta_{n} \sin \left(\frac{2 n-1}{2 l} \pi c t\right)\right) \\
& =\gamma_{n} \cos \left(\frac{2 n-1}{2} \pi \frac{x}{l}\right) \cos \left(\frac{2 n-1}{2 l} \pi c t-\psi_{n}\right)
\end{aligned}
$$

where $\gamma_{n}=\sqrt{\alpha_{n}^{2}+\beta_{n}^{2}}$ and $\psi_{n}=\arctan \left(\beta_{n} / \alpha_{n}\right)$.
(b) The angular frequency ω_{n} of the n 'th mode is

$$
\omega_{n}=\frac{2 n-1}{2 l} \pi c
$$

and thus the frequency of the n 'th mode is

$$
f_{n}=\frac{\omega_{n}}{2 \pi}=\frac{2 n-1}{4} \frac{c}{l}
$$

Figure 7: Various phases of the first two normal modes $p_{n}(x, t)(n=1,2)$ with $\gamma_{n}=1$. Note that the envelopes (solid lines) are just $\cos ((2 n-1) \pi x /(2 l))$.

Thus, the frequencies and pressure distribution for the first two normal modes ($n=$ 1,2) are

$$
\begin{aligned}
& f_{1}=\frac{1}{4} \frac{c}{l}, \quad p_{1}(x, t)=\gamma_{1} \cos \left(\frac{\pi}{2} \frac{x}{l}\right) \cos \left(\frac{\pi c t}{2 l}-\psi_{1}\right) \\
& f_{2}=\frac{3}{4} \frac{c}{l}=3 f_{1}, \quad p_{2}(x, t)=\gamma_{2} \cos \left(\frac{3 \pi}{2} \frac{x}{l}\right) \cos \left(\frac{3 \pi c t}{2 l}-\psi_{n}\right)
\end{aligned}
$$

Various phases of the pressure distributions $p_{n}(x, t)$ of the first two normal modes are plotted in Figure 7, with $\gamma_{n}=1$. Notice that $\partial p / \partial x=0$ at the close end $(x=0)$ and $p=0$ at the right end $(x=l)$. This are like the standing waves that appear when you shake a rope at $x=0$ attached to a wall at $x=l$.
(c) The general initial boundary value problem for the organ pipe is

$$
\begin{aligned}
p_{t t} & =c^{2} p_{x x}, \quad 0<x<l, \quad t>0 \\
\frac{\partial p}{\partial x}(0, t) & =0=p(l, t), \quad t>0 \\
p(x, 0) & =f(x), \quad \frac{\partial p}{\partial t}(x, 0)=g(x), \quad 0<x<l .
\end{aligned}
$$

Continuing from above, we including all the modes $p_{n}(x, t)$ in our series solution for
$p(x, t)$,
$p(x, t)=\sum_{n=1}^{\infty} p_{n}(x, t)=\sum_{n=1}^{\infty} \cos \left(\frac{2 n-1}{2} \pi \frac{x}{l}\right)\left(\alpha_{n} \cos \left(\frac{2 n-1}{2 l} \pi c t\right)+\beta_{n} \sin \left(\frac{2 n-1}{2 l} \pi c t\right)\right)$
Imposing the ICs gives

$$
\begin{gathered}
f(x)=p(x, 0)=\sum_{n=1}^{\infty} \cos \left(\frac{2 n-1}{2} \pi \frac{x}{l}\right) \alpha_{n} \\
g(x)=\frac{\partial p}{\partial t}(x, 0)=\sum_{n=1}^{\infty} \cos \left(\frac{2 n-1}{2} \pi \frac{x}{l}\right) \frac{2 n-1}{2 l} c \pi \beta_{n}
\end{gathered}
$$

These are both cosine series. Multiplying each side by $\cos ((2 m-1) \pi x /(2 l))$ and integrating from $x=0$ to $x=l$ and using orthogonality gives

$$
\begin{aligned}
\alpha_{n} & =\frac{2}{l} \int_{0}^{l} f(x) \cos \left(\frac{2 n-1}{2} \pi \frac{x}{l}\right) d x \\
\frac{2 n-1}{2 l} \pi c \beta_{n} & =\frac{2}{l} \int_{0}^{l} g(x) \cos \left(\frac{2 n-1}{2} \pi \frac{x}{l}\right) d x
\end{aligned}
$$

Thus

$$
\beta_{n}=\frac{4}{(2 n-1) \pi c} \int_{0}^{l} g(x) \cos \left(\frac{2 n-1}{2} \pi \frac{x}{l}\right) d x .
$$

