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Elementary linear-algebra classes always cover the fact that Hermitian matrices A = A∗

have real eigenvalues, eigenvectors that can be chosen orthonormal, and are diagonalizable.
In 18.303, we learned that self-adjoint operators Â also have real values and orthonormal
eigenfunctions, and are usually diagonalizable in the sense of a spectral theorem. How-
ever, these Hermitian eigenproblems (finite- or infinite-dimensional) have another important
property that you may not have learned: they obey a min–max theorem or variational
principle, which tells us that the eigensolutions minimize or maximize a certain quantity.
This is useful in lots of ways, most immediately because it gives us an intuitive way to
“guess” the qualitative features of the eigensolutions.

The Rayleigh Quotient

In particular, suppose we are looking at a (Sobolev) space V of functions (or vectors)
u, with some inner product 〈u, v〉 under which Â = Â∗. Furthermore assume that Â is
diagonalizable,{ i.e. we have a complete basis of eigenfunctions un satisfying Auˆ n = λnun and

1 n = m〈un, um〉 = . Consider the Rayleigh quotient for any u
0 n =6 m

∈ V (not necessarily

an eigenfunction):

R{u} =
〈u, Âu〉
〈u, u〉

.

We use {· · · } brackets to denote that R is a functional : it maps functions u to numbers. Note
that R{u} is real because Â = Â∗: R{u} = Auˆ〈u, 〉/〈u, u〉 = ˆ〈Au, u〉/〈u, u〉 = 〈u,Auˆ 〉/〈u, u〉.
Note that if u is an eigenfunction un, then R{un} = λn.

The Min–Max Theorem

Now, the min–max theorem (also called the variational principle) tells us a remarkable
fact: R is bounded above and below by the minimum and maximum λ (if any: λ may be
unbounded in one direction). That is:

λmin (if any) ≤ R{u} ≤ λmin (if any)

for any u ∈ V with u 6= 0. Equality is achieved if and only if u = umin / max. That is,
λmin and λmax and the corresponding eigenfunctions minimize or maximize the Rayleigh
quotient, respectively:

λmin (if any) = min R u ,
u6=0∈V

{ }

λmax (if any) = max R
u6=0∈V

{u},

with the minima achieved at the eigenfunctions. (In fact, it is possible to go further and to
show that all eigenvalues are extrema of R.)
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The proof is very simple if we can assume a complete basis of eigenfunctions (although
this∑ is a nontrivial assumption for infinite-dimensional problems). In particular, write u =

n cnun for coefficients cn = 〈un, u〉. Then〈∑
m cmum, Â

R{u} =

∑
n cnun

〉
〈∑

m′ cm′um′ , Â
∑

n′ cn′un′

〉 =

∑
m,n cmcnλn〈um, un〉∑

m′,n′ cm′cn′〈um′ , un′〉

=
∑

n |cn|2λn

whic

∑ ,
n′ |cn′ |2

h is just a weighted average of the λ’s and hence is bounded above and below by the
maximum and minimum λ (if any):

λmin =
∑

n |cn|2λmin∑
n′ |cn′ |2

≤
∑

n |cn|2λn∑
n′ |cn′ |2

≤
∑

n |cn|2λmax∑ = λ .
n′ |cn′ |

max2

Deflation
Suppose that we have an ascending sequence of eigenvalues λ1 < λ2 < λ3 < · · · . We
know that λ1 minimizes R{u}, but what about λ2 and so on? We can get at these higher
eigenvalues by a process called deflation, where we “remove eigenvalues” from Â one by
one.

Consider the orthogonal complement u⊥1 : the subspace of all u ∈ V with 〈u1, u〉 = 0.
This modifies the argument in the previous section because, in this space, c1 = 0 and the
λ1 term is missing from R{u}. That means that the minimum of R{u} for u ∈ u⊥1 is λ2!
Similarly, to get λ3 we should look at the space {u1, u2}⊥: all u orthogonal to u1 and u2

(which removes λ1 and λ2 from R), and so on. Thus:

λ1 = min R
u6=0∈V

{u},

λ2 = min R
u6=0∈u⊥1

{u},

λ3 = min R
u6=0∈{u1,u2}⊥

{u},

... ,

where the minima are achieved at u = u1, u2, u3, . . ..
Not too much changes if we have a repeated eigenvalue, say λ2 = λ3. In that case, the

second minimum will be achieved for two linearly independent u, giving u2 and u3 (or we
can simply pick one as u2, and then minimizing ⊥ u1, u2 will give u3 with the same λ).

Example: Guessing eigenfunctions of −∇2

Consider the operator Â = −∇2 on some Ω, with u|∂Ω = 0. Integrating by parts, we find

2

R{u}
´

Ω
|∇u

=
|
.´

Ω
|u|2

Therefore, u1 is the function that oscillates as little as possible (in the sense of minimizing its
mean |∇u|2). It has to oscillate a little, because it has to go back to zero at the boundaries,
so it will be some function that starts at zero at the boundaries, goes up slowly to some
maximum in the middle of Ω, and then goes back down to zero at the opposite boundaries.
For example, just like sin(πx/L) in 1d!

Similarly, u2 also “wants” to oscillate as little as possible, but must be ⊥ u1. Therefore,
it is forced to go through zero roughly where u1 peaks, in order that 〈u1, u2〉 = 0. For
example, like sin(2πx/L) in 1d. u3 also wants to oscillate as little as possible, but must
have additional oscillations to be ⊥ to u1 and u2, and so on.

In a multidimensional domain like a rectangle, the u2+ functions have a “choice” about
which direction they want to oscillate along in order to be ⊥ to the previous eigenfunctions.
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Figure 1: Contour plots of the eigenfunctions for the smallest three eigenvalues λ of the
−∇2 operator on a triangular half of a square (cut diagonally), with Dirichlet boundary
conditions.

Since they want to oscillate as little as possible (minimal R), they will oscillate along the
“long axes” of Ω first.

This allows us to easily “guess” the qualitative features of the smallest-|λ| eigenfunctions
even for complicated domains Ω. For example, consider the triangular domain Ω in figure 1.
The lowest λ solution should therefore just have a single peak in the center—it has to be
zero at the boundaries, and must be nonzero somewhere, so the slowest it can oscillate is to
go up to a peak in the center and then back down, as in figure 1(left). The second u must be
orthogonal to the first, so it must flip sign, i.e. have two peaks of opposite sign, but in which
direction? This triangle is not equilateral1—it is longer in the (−1, 1) direction (parallel to
the diagonal of the square), so that is the direction in which a sign oscillation can occur
most slowly. Hence, we should expect a single +/− oscillation along this direction, as in
figure 1(middle). The third u must be orthogonal to the first two, and the slowest oscillation
that will do this turns out to be in the (1, 1) direction, as in figure 1(right). However, this
one is a little tricky, because it is not completely obvious that the third u does not instead
oscillate three times in the (-1,1) direction (i.e. −/ + /− peaks aong that direction). As
|λ| gets bigger, it gets harder to guess the exact ordering of the eigenfunctions, but you
can still guess what they look like modulo some uncertainty which of certain pairs come
first. [Exact calculations turn out to show that a 3-peak oscillation in the (−1, 1) direction
gives the fourth λ, which is about 30% bigger than the third λ, corresponding to an average
“wavelength” that is about 12% smaller.]

Example: Guessing eigenfunctions of −c∇2

It gets even more interesting for the case of nonconstant coefficients, e.g. Â = −c(~x)∇2 for
some c > 0. In this case, Â is self-adjoint under the weighted inner product 〈u, v〉 = uv

Ω
¯ /c,

so the Rayleigh quotient is

´
2

R{ } =

´
Ω
|∇u

u
|
.´

Ω
|u|2/c

Now, u1 is trying to satisfy two competing concerns:

• u1 “wants” to oscillate as little as possible to minimize the numerator of R.

• u1 “wants” to concentrate in low-c regions to maximize the denominator of R.

Which of these concerns dominates depends on how much c varies. As c in one region gets
smaller and smaller relative to other regions, u1 will concentrate more and more in this
region, even though by doing so it will have larger |∇u|.

As before, u2 and higher minimize the same R but must be orthogonal to u1. So, u2 is
“forced out” of the low-c regions to some extent by orthogonality, since it must have a node
in those regions to be ⊥ u1.

1In an equilateral triangle, the second two λ′s turn out to be equal, i.e. oscillating in either of the
two directions gives the same Rayleigh queotient. This equality turns out to be a deeper consequence of
symmetry, but that is outside the scope of 18.303.
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