18.303 Midterm, Fall 2014

Each problem has equal weight. You have 55 minutes.

Problem 1: Adjoints (25 points)

Consider the operator $\hat{A} u=\frac{d^{2}}{d x^{2}}(c u)$ on the domain $\Omega=[0, L]$ with Dirichlet boundaries $\left.u\right|_{\partial \Omega}=0$, where $c(x)>0$. Show that $\hat{A}=\hat{A}^{*}$ for an appropriate choice of inner product $\langle u, v\rangle$.

Problem 2: Green (25 points)

Consider the operator $\hat{A}=-\nabla^{2}$ in 2 d , where the domain is the entire x, y plane. In cylindrical (r, ϕ) coordinates, we can write

$$
\nabla^{2} u=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \phi^{2}}
$$

We want to solve for the Green's function $G\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=g\left(\left|\mathbf{x}-\mathbf{x}^{\prime}\right|\right)$ of \hat{A}, reduced to a function $g(r)$ by the symmetry of the problem. By looking at $r>0$, one can quickly show that $g(r)=c \ln r$ for some unknown constant c. This g defines a regular distribution, if we just set $g(0)=0$, despite the fact that ln blows up [it is an "integrable" singularity in 2 d : the integral exists for any test function $\psi(x, y)]$. Find c.

Problem 3: Waves (25 points)

In class, we re-wrote the wave equation $u^{\prime \prime}=\ddot{u}$ in the form $\hat{D} \mathbf{w}=\partial \mathbf{w} / \partial t$, where $\mathbf{w}=\binom{u}{v}$ and $\hat{D}=\binom{\partial / \partial x}{\partial / \partial x}$. We showed that $\hat{D}^{*}=-\hat{D}$ (anti-Hermitian) for appropriate boundary conditions (let's say $u=0$ on the boundaries) for the obvious inner product $\left\langle\mathbf{w}, \mathbf{w}^{\prime}\right\rangle=\int_{\Omega} \mathbf{w}^{*} \mathbf{w}^{\prime}$, and hence \hat{D} has purely imaginary eigenvalues $\lambda=-i \omega$ (oscillating solutions), and $\|\mathbf{w}\|^{2}=\langle\mathbf{w}, \mathbf{w}\rangle$ was a conserved "energy."

Consider a new operator:

$$
\hat{D}_{\sigma}=\left(\begin{array}{cc}
-\sigma & \partial / \partial x \\
\partial / \partial x & -\sigma
\end{array}\right)
$$

where $\sigma(x)>0$.
(a) Show that $\|\mathbf{w}\|^{2}$ is not conserved; it is \qquad in time. Hint: consider $\partial\langle\mathbf{w}, \mathbf{w}\rangle / \partial t$ as in class.
(b) Show that if \mathbf{w}_{n} is an eigenfunction, i.e. $\hat{D}_{\sigma} \mathbf{w}_{n}=\lambda_{n} \mathbf{w}_{n}$, then the real part of λ is negative (hence the eigensolutions are \qquad in time). Hint: consider $\left\langle\mathbf{w}_{n},\left(\hat{D}_{\sigma}+\hat{D}_{\sigma}^{*}\right) \mathbf{w}_{n}\right\rangle$.

Problem 4: Discrete Waves (25 points)

Consider the operator

$$
\hat{D}_{\sigma}=\left(\begin{array}{cc}
-\sigma & \partial / \partial x \\
\partial / \partial x & -\sigma
\end{array}\right)
$$

from the previous problem, acting on $\mathbf{w}=\binom{u}{v}$. For $\sigma=0$, we discretized this in class via $u_{m}^{n} \approx u(m \Delta x, n \Delta t)$ and $v_{m+0.5}^{n+0.5}$ (a staggered grid in space and time):

$$
\begin{aligned}
& \frac{u_{m}^{n+1}-u_{m}^{n}}{\Delta t}=\frac{v_{m+0.5}^{n+0.5}-v_{m-0.5}^{n+0.5}}{\Delta x} \\
& \frac{v_{m+0.5}^{n+0.5}-v_{m+0.5}^{n-0.5}}{\Delta t}=\frac{u_{m+1}^{n}-u_{m}^{n}}{\Delta x}
\end{aligned}
$$

Write down a center-difference (second-order accurate) scheme for $\partial \mathbf{w} / \partial t=\hat{D}_{\sigma} \mathbf{w}$. For simplicity, take σ to be a constant (independent of x or t), and solve for:

$$
\begin{array}{r}
u_{m}^{n+1}=? \\
v_{m+0.5}^{n+0.5}=?
\end{array}
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.303 Linear Partial Differential Equations: Analysis and Numerics

Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

