
18.303 Problem Set 5 Solutions 

Problem 1: ((3+2+5+5)+(5+5) points) 

(a) Solutions: 

(i) f(x) is bounded in every interval except intervals containing x = 0, so local integrability is trivial except ´ bfor intervals containing x = 0. It is sufficient to consider integrals , because any interval [a, b] containing 
0 ´ 0 ´ b

0 can be broken up into + , and f(−x) = f(x) so we only need to show that the latter is finite. But 
a 0 

we can now just do the integral explicitly: 

ˆ b ˆ b 

ln x dx = lim ln x dx = lim x ln x − x|bl = b ln b − b, 
l→0+ l→0+ 

0 l 

since 

lim x ln x = 0, 
l→0+ 

as can easily be seen e.g. by L’Hôpital’s rule applied to lim ln x = lim 1/x = lim x = 0.1/x −1/x2 

(ii) g(x) is not locally integrable for intervals containing the origin. For example 

ˆ b ˆ b dx b|g(x)|dx = lim = lim ln x|l = ∞. 
l→0+ x l→0+ 

0 l 

Therefore, f '{φ} = f{−φ'} is a singular distribution. 

(iii) We write f '{φ} = liml→0+ fl
'{φ}, and integrate by parts in fl'{φ} = fl{−φ'}: ⎡ ⎤ ˆ −l ˆ ∞ ⎣ ⎦ 

l→0+ ' -v " ' -v " ' -v " ' -v " f '{φ} = − lim ln(−x) φ'(x)dx + ln(x) φ'(x)dx 
−∞ l 

u dv u dv   ˆ −l ˆ ∞−1 1 
= − lim ln(E)φ(−E) − φ(x)dx − ln(E)φ(E) − φ(x)dx

l→0+ x x  ˆ −l ˆ −∞
∞  l 

1 1   
= lim φ(x)dx + φ(x)dx + lim [ln(E) (φ(E) − φ(−E))]. 

   
   

   
 

x →0+l→0+ x l−∞ l 

´
In the last line, the first limit is precisely the Cauchy Principal Value of g(x)φ(x)dx (CPV = remove a 
ball of radius E around the singularity, do the integral, and then take the E → 0+ limit). The second term 
vanishes because, since φ(x) is continuous and infinitely differentiable, φ(E) − φ(−E) vanishes at least as fast 
as E as E → 0, so its product with ln E vanishes in the limit as in part (i).1 

(iv) Use f '{φ} = f{−φ'} = f{−[φ − φ(0)]'} = f '{φ − φ(0)}. Then substitute φ − φ(0) into the previous part, 
and note that since the integrand φ(x)−φ(0) is now finite as x → 0 [since φ(x) − φ(0) goes to zero as x → 0,x 
at least proportionally to x or faster as in the previous part], we can now just take the limit to write ´ ∞
f '{φ} = g(x)[φ(x) − φ(0)]dx without using the CPV. −∞ 

(b) Solutions: 

(i) Let V c denote the complement of V (the exterior region outside V , i.e. V c = Rd\V ), and note that 

1This last fact is a little subtle. Naively, we could just write the Taylor expansion φ(x) = φ(0) + φ'(0)E + O(E2) to obtain φ(E) − φ(−E) = 
2φ'(0)E+O(E2). However, it turns out that test functions φ(x) are not analytic (do not have a convergent Taylor series) at all x. Nevertheless, 
because φ is differentiable with bounded φ', it follows that φ(x) is “Lipshitz continuous:” |φ(x) − φ(y)| < K|x − y| for all x, y and for some 
constant K > 0 (e.g. you can prove this from the mean-value theorem of analysis), so φ(E) − φ(−E) < 2KE and the result follows. But I 
don’t expect you to provide this level of proof; a Taylor argument is acceptable. 
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∂V c = ∂V (but with the outward-normal vector reversed in sign). We write: 

ˆ ˆ
Vf{φ} = f{−Vφ} = − f1Vφ − f2Vφ 

V cV ˆ ˆ
= − [V(f1φ) − φVf1] − [V(f2φ) − φVf2] 

V V c ˛ ˆ ˛ ˆ
= − f1φn + φVf1 + f2φn + φVf2 

∂V V ∂V V c    
Vf1(x) x ∈ V 

= δ(∂V ) [f2(x) − f1(x)] n(x) + {φ}
Vf2(x) x ∈/ V

as desired. 

(ii) In this case, we will need to integrate by parts twice, but we can just quote the results from the “notes on 
elliptic operators” from class (where we integrated by parts twice with −V2 already), albeit keeping the 
boundary terms from ∂V that were zero in the notes: 

ˆ ˆ
V2f{φ} = f{V2φ} = f1V2φ + f2V2φ 

V cV ˛ ˆ ˆ
= [(f1 − f2)Vφ − φ(Vf1 −Vf2)] · n + φV2f1 + φV2f2. 

V c∂V V 

But the first term is δ(∂V ) [f1(x) − f2(x)] {n·Vφ} = (n·V)δ(∂V ) [f2(x) − f1(x)] {φ} by the definition (note 
the sign change) of the distributional derivative n ·V (note that this is a scalar derivative in the n direction, 
not a gradient vector). The second term is a surface delta function weighted by (n · Vf1 − n · Vf2) ,the 
discontinuity in the normal derivative. And the last terms are just a regular distribution. So, we have  

V2f1(x) x ∈ VV2f = (n · V)δ(∂V ) [f2 − f1] + δ(∂V ) [n · Vf1 − n · Vf2] + . 
V2f2(x) x ∈/ V 

As noted in class, n · V of a delta function is a “dipole” oriented in the n direction, so the first term is a 
“dipole layer”. 

Problem 2: ((5+10)+2 points) 

(a) We solve for g(r) in 3d as follows: 

1 h ''(i) For r > 0, −V2g − ω2g = 0 and hence −ω2g = V2g = (rg) '' =⇒ = −ω2h where h(r) = rg(r). The r 
iωr +de−iωr iωr + de−iωr cesolution to this is h(r) = ce for some constants c and d, or g(r) = r 

It is a little more tricky to determine whether we should use the c or the d term than in class, since 
both decay at the same rate. The ratio c/d will be determined by some kind of boundary condition at 

±iωr infinity, but what might this be? It is acceptable for you to just punt on this here; since e are complex 
conjugates of each other, your analysis will apply equally well to either one, and you can arbitrarily pick 
one, say ceiωr/r, to analyze. 

However, to see why there should be a sensible choice, recall that this operator arose in pset 5 by as
−iωt suming a time dependence e multiplying the solution, in which case we are looking at wave solutions 

iω(r−t) +de−iω(r+t)ce , where the c term describes waves moving out towards r → ∞, while the d term describes r 
waves moving in from infinity. In wave problems, we typically impose a boundary condition of outgoing 
waves at infinity, in which case we must set d = 0. (However, the choice would have been reversed if we 
picked the opposite sign convention, e+iωt, for the time dependence.) 

(ii) Let’s focus on g(r) = ceiωr/r. As in class, the 1/r singularity is no problem in 3d (it is cancelled by the 
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Jacobian factor r2dr), so g is a regular distribution. Given an arbitrary test function q(x), we now evaluate 
ˆ

( ˆ ˆAg){q} = g{Aqˆ } = gAq ⎤⎡ 
ˆ ∞ ˆ 2π ˆ π 

r 2dr dφ 
0 0 0 

sin θ dθ 
⎢⎢⎣−ω2 gq − 

⎥⎥⎦ 

integrate to 0, from class 

∂2g "(θ, φ derivatives of q) -v '(rq) + = 
r ∂r2 

⎞⎛⎡ 

dr 

⎤ ⎥⎥⎥⎦ 

⎢⎢⎢⎣ c 
⎜⎜⎜⎝ 

int. by parts 

⎟⎟⎟⎠
ˆ ∞ 

0 

∂2¨ 
iωr − iωr −ω2 rqe esin θ dθ dφ [rq]= 

∂r2 ' " -v 
⎡ ⎛ ⎜⎜⎜⎝ 

⎤⎞ ⎢⎢⎢⎣ 

⎟⎟⎟⎠ 
dr 
⎥⎥⎥⎦

ˆ ∞ 

0

¨ 
∂ ∂ 
[rq]

∞  
0 

  + c iωr iωr −ω2 rqe + iωeiωr −cesin θ dθ dφ [rq]= 
∂r ∂r ' " -v 

int. by parts   ˆ ∞ 

0

¨ 
       −(0)  cq

 
icωeiωr[rq]

0 

∞ iωr iωr[rq]−ω2 rqe + ω2 esin θ dθ dφ dr+ c= 

= 4πcq(0), 

and hence c = 1/4π . Thus 
/|iω|x−xe

G(x, x ' ) = 
4π|x − x '| 

assuming boundary conditions such that d = 0. More generally, since exactly the same result applies to the 
de−iωr/r term, we obtain, 

/| / |iω|x−xce + de−iω|x−x 

G(x, x ' ) = 
|x − x '| 

'for c + d = 1/4π , with the ratio c/d being set by the boundary conditions at ∞. The value at x = x 
being irrelevant in the distribution sense, e.g. we can assign it to zero, since this is a regular distribution 
with a finite integral, similar to class.) 

(b) The ω → 0 limit gives 1/4π|x − x ' | as in class, by inspection. 
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