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Figure 1: A volume V with a surface ∂V , and an outward unit normal vector n at each point on ∂V . 

18.303 Problem Set 5 

Due Monday, 27 October 2014. 

Problem 1: Distributions 

This problem concerns distributions as defined in the notes: continuous linear functionals f{φ} from test functions 
φ ∈ D, where D is the set of infinitely differentiable functions with compact support (i.e. φ = 0 outside some region 
with finite diameter [differing for different φ], i.e. outside some finite interval [a, b] in 1d).  

ln |x| x = 0  
(a) In this part, you will consider the function f(x) = and its (weak) derivative, which is connected 

0 x = 0 
to something called the Cauchy Principal Value. 

(i) Show that f(x) defines a regular distribution, by showing that f(x) is locally integrable for all intervals 
[a, b].  

1 = 0 x(ii) Consider the 18.01 derivative of f(x), which gives f '(x) =
x  

. Suppose we just set 
undefined x = 0  

1 = 0 x“f '(0) = 0” at the origin to define g(x) =
x  

. Show that this g(x) is not locally integrable, 
0 x = 0 

and hence does not define a distribution. 

But the weak derivative f '{φ} must exist, so this means that we have to do something different from 
the 18.01 derivative, and moreover f '{φ} is not a regular distribution. What is it? ´ −f ´ ∞(iii) Write f{φ} = limf→0+ ff{φ} where ff{φ} = −∞ ln(−x)φ(x)dx + 

f ln(x)φ(x)dx, since this limit exists 
and equals f{φ} for all φ from your proof in the previous part.1 Compute the distributional derivative 
f '{φ} = limf→0+ ff

'{φ}, and show that f '{φ} is precisely the Cauchy Principal Value (google the definition, 
e.g. on Wikipedia) of the integral of g(x)φ(x). ´ ∞(iv) Alternatively, show that f '{φ(x)} = g{φ(x) − φ(0)} = g(x)[φ(x) − φ(0)]dx (which is a well-defined −∞ 
integral for all φ ∈ D). 

(b) In class, we only looked explicitly at 1d distributions, but a distribution in d dimensions Rd can obviously be 
defined similarly, as maps f{φ} from smooth localized functions φ(x) to numbers. Analogous to class, define the 
distributional gradient 'f by 'f{φ} = f{−'φ}. 

Consider some finite volume V with a surface ∂V , and assume ∂V is differentiable so that at each point 
it has an outward-pointing unit normal vector n, as shown in figure 1. Define a “surface delta function” ¸ ¸
δ(∂V ){φ} = φ(x)dd−1x to give the surface integral of the test function. 

∂V ∂V 

´ d ´ d1More explicitly, f{φ} − fd{φ} = ln |x|φ(x)dx ≤ (max φ) ln |x|dx → 0, since you should have done the something like the last −d −d 
integral explicitly in the previous part. 
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f1(x) x ∈ V
Suppose we have a regular distribution f{φ} defined by the function f(x) = , where we may 

f2(x) x ∈/ V
 
have a discontinuity f2 − f1 = 0 at ∂V .
 

(i) Show that the distributional gradient of f is 

'f1(x) x ∈ V 'f = δ(∂V ) [f1(x) − f2(x)] n(x) + , 
'f2(x) x ∈/ V 

where the second term is a regular distribution given by the ordinary 18.02 gradient of f1 and f2 (assumed 
to be differentiable), while the first term is the singular distribution 

˛
δ(∂V ) [f1(x) − f2(x)] n(x){φ} = [f1(x) − f2(x)] n(x)φ(x)d

d−1 x. 
∂V 

´ ¸
You can use the integral identity that 'ψddx = 

∂V ψnd
d−1x to help you integrate by parts. 

V 

(ii) Defining '2f{φ} = f{'2φ}, derive a similar expression to the above for '2f . Note that you should have 
one term from the discontinuity f1 − f2, and another term from the discontinuity 'f1 −'f2. (Recall how 
we integrated '2 by parts in class some time ago.) 

Problem 2: Green’s functions 

Consider Green’s functions of the self-adjoint indefinite operator Â = −'2 − ω2 (κ > 0) over all space (Ω = R3 in 
3d), with solutions that → 0 at infinity. (This is the multidimensional version of problem 2 from pset 5.) As in class, 
thanks to the translational and rotational invariance of this problem, we can find G(x, x ' ) = g(|x − x ' |) for some g(r) 
in spherical coordinates. 

(a) Solve for g(r) in 3d, similar to the procedure in class. 

(i) Similar to the case of Â = −'2 in class, first solve for g(r) for r > 0, and write g(r) = limf→0+ ff(r) 
2where ff(r) = 0 for r ≤ E. [Hint: although Wikipedia writes the spherical '2g(r) as 1 (r g ' ) ', it may be 2r

1more convenient to write it equivalently as '2g = (rg) '', as in class, and to solve for h(r) = rg(r) first. r 
Hint: if you get sines and cosines from this differential equation, it will probably be easier to use complex 
exponentials, e.g. eiωr, instead.] 

(ii) In the previous part, you should find two solutions, both of which go to zero at infinity. To choose between 
them, remember that this operator arose from a e−iωt time dependence. Plug in this time dependence and 
impose an “outgoing wave” boundary condition (also called a Sommerfield or radiation boundary condition): 
require that waves be traveling outward far away, not inward. 

(iii) Then, evaluate Agˆ = Ag){q} = g{ ˆ = q(0) for an arbitrary (smooth, δ(x) in the distributional sense: ( ˆ Aq}
localized) test function q(x) to solve for the unknown constants in g(r). [Hint: when evaluating g{ Âq}, you 
may need to integrate by parts on the radial-derivative term of '2q; don’t forget the boundary term(s).] 

(b) Check that the ω → 0+ limit gives the answer from class. 
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