

Figure 1: A volume V with a surface ∂V, and an outward unit normal vector \mathbf{n} at each point on ∂V.

18.303 Problem Set 5

Due Monday, 27 October 2014.

Problem 1: Distributions

This problem concerns distributions as defined in the notes: continuous linear functionals $f\{\phi\}$ from test functions $\phi \in \mathcal{D}$, where \mathcal{D} is the set of infinitely differentiable functions with compact support (i.e. $\phi=0$ outside some region with finite diameter [differing for different ϕ], i.e. outside some finite interval $[a, b]$ in 1d).
(a) In this part, you will consider the function $f(x)=\left\{\begin{array}{ll}\ln |x| & x \neq 0 \\ 0 & x=0\end{array}\right.$ and its (weak) derivative, which is connected to something called the Cauchy Principal Value.
(i) Show that $f(x)$ defines a regular distribution, by showing that $f(x)$ is locally integrable for all intervals $[a, b]$.
(ii) Consider the 18.01 derivative of $f(x)$, which gives $f^{\prime}(x)=\left\{\begin{array}{ll}\frac{1}{x} & x \neq 0 \\ \text { undefined } & x=0\end{array}\right.$. Suppose we just set " $f^{\prime}(0)=0$ " at the origin to define $g(x)=\left\{\begin{array}{ll}\frac{1}{x} & x \neq 0 \\ 0 & x=0\end{array}\right.$. Show that this $g(x)$ is not locally integrable, and hence does not define a distribution.

But the weak derivative $f^{\prime}\{\phi\}$ must exist, so this means that we have to do something different from the 18.01 derivative, and moreover $f^{\prime}\{\phi\}$ is not a regular distribution. What is it?
(iii) Write $f\{\phi\}=\lim _{\epsilon \rightarrow 0^{+}} f_{\epsilon}\{\phi\}$ where $f_{\epsilon}\{\phi\}=\int_{-\infty}^{-\epsilon} \ln (-x) \phi(x) d x+\int_{\epsilon}^{\infty} \ln (x) \phi(x) d x$, since this limit exists and equals $f\{\phi\}$ for all ϕ from your proof in the previous part. 1 Compute the distributional derivative $f^{\prime}\{\phi\}=\lim _{\epsilon \rightarrow 0^{+}} f_{\epsilon}^{\prime}\{\phi\}$, and show that $f^{\prime}\{\phi\}$ is precisely the Cauchy Principal Value (google the definition, e.g. on Wikipedia) of the integral of $g(x) \phi(x)$.
(iv) Alternatively, show that $f^{\prime}\{\phi(x)\}=g\{\phi(x)-\phi(0)\}=\int_{-\infty}^{\infty} g(x)[\phi(x)-\phi(0)] d x$ (which is a well-defined integral for all $\phi \in \mathcal{D})$.
(b) In class, we only looked explicitly at $1 d$ distributions, but a distribution in d dimensions \mathbb{R}^{d} can obviously be defined similarly, as maps $f\{\phi\}$ from smooth localized functions $\phi(\mathbf{x})$ to numbers. Analogous to class, define the distributional gradient ∇f by $\nabla f\{\phi\}=f\{-\nabla \phi\}$.

Consider some finite volume V with a surface ∂V, and assume ∂V is differentiable so that at each point it has an outward-pointing unit normal vector \mathbf{n}, as shown in figure 1. Define a "surface delta function" $\delta(\partial V)\{\phi\}=\oint_{\partial V} \phi(\mathbf{x}) d^{d-1} \mathbf{x}$ to give the surface integral $\oint_{\partial V}$ of the test function.

[^0]Suppose we have a regular distribution $f\{\phi\}$ defined by the function $f(\mathbf{x})=\left\{\begin{array}{ll}f_{1}(\mathbf{x}) & \mathbf{x} \in V \\ f_{2}(\mathbf{x}) & \mathbf{x} \notin V\end{array}\right.$, where we may have a discontinuity $f_{2}-f_{1} \neq 0$ at ∂V.
(i) Show that the distributional gradient of f is

$$
\nabla f=\delta(\partial V)\left[f_{1}(\mathbf{x})-f_{2}(\mathbf{x})\right] \mathbf{n}(\mathbf{x})+ \begin{cases}\nabla f_{1}(\mathbf{x}) & \mathbf{x} \in V \\ \nabla f_{2}(\mathbf{x}) & \mathbf{x} \notin V\end{cases}
$$

where the second term is a regular distribution given by the ordinary 18.02 gradient of f_{1} and f_{2} (assumed to be differentiable), while the first term is the singular distribution

$$
\delta(\partial V)\left[f_{1}(\mathbf{x})-f_{2}(\mathbf{x})\right] \mathbf{n}(\mathbf{x})\{\phi\}=\oint_{\partial V}\left[f_{1}(\mathbf{x})-f_{2}(\mathbf{x})\right] \mathbf{n}(\mathbf{x}) \phi(\mathbf{x}) d^{d-1} \mathbf{x}
$$

You can use the integral identity that $\int_{V} \nabla \psi d^{d} \mathbf{x}=\oint_{\partial V} \psi \mathbf{n} d^{d-1} \mathbf{x}$ to help you integrate by parts.
(ii) Defining $\nabla^{2} f\{\phi\}=f\left\{\nabla^{2} \phi\right\}$, derive a similar expression to the above for $\nabla^{2} f$. Note that you should have one term from the discontinuity $f_{1}-f_{2}$, and another term from the discontinuity $\nabla f_{1}-\nabla f_{2}$. (Recall how we integrated ∇^{2} by parts in class some time ago.)

Problem 2: Green's functions

Consider Green's functions of the self-adjoint indefinite operator $\hat{A}=-\nabla^{2}-\omega^{2}(\kappa>0)$ over all space ($\Omega=\mathbb{R}^{3}$ in 3 d), with solutions that $\rightarrow 0$ at infinity. (This is the multidimensional version of problem 2 from pset 5.) As in class, thanks to the translational and rotational invariance of this problem, we can find $G\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=g\left(\left|\mathbf{x}-\mathbf{x}^{\prime}\right|\right)$ for some $g(r)$ in spherical coordinates.
(a) Solve for $g(r)$ in 3d, similar to the procedure in class.
(i) Similar to the case of $\hat{A}=-\nabla^{2}$ in class, first solve for $g(r)$ for $r>0$, and write $g(r)=\lim _{\epsilon \rightarrow 0^{+}} f_{\epsilon}(r)$ where $f_{\epsilon}(r)=0$ for $r \leq \epsilon$. [Hint: although Wikipedia writes the spherical $\nabla^{2} g(r)$ as $\frac{1}{r^{2}}\left(r^{2} g^{\prime}\right)^{\prime}$, it may be more convenient to write it equivalently as $\nabla^{2} g=\frac{1}{r}(r g)^{\prime \prime}$, as in class, and to solve for $h(r)=r g(r)$ first. Hint: if you get sines and cosines from this differential equation, it will probably be easier to use complex exponentials, e.g. $e^{i \omega r}$, instead.]
(ii) In the previous part, you should find two solutions, both of which go to zero at infinity. To choose between them, remember that this operator arose from a $e^{-i \omega t}$ time dependence. Plug in this time dependence and impose an "outgoing wave" boundary condition (also called a Sommerfield or radiation boundary condition): require that waves be traveling outward far away, not inward.
(iii) Then, evaluate $\hat{A} g=\delta(\mathbf{x})$ in the distributional sense: $(\hat{A} g)\{q\}=g\{\hat{A} q\}=q(0)$ for an arbitrary (smooth, localized) test function $q(\mathbf{x})$ to solve for the unknown constants in $g(r)$. [Hint: when evaluating $g\{\hat{A} q\}$, you may need to integrate by parts on the radial-derivative term of $\nabla^{2} q$; don't forget the boundary term(s).]
(b) Check that the $\omega \rightarrow 0^{+}$limit gives the answer from class.

MIT OpenCourseWare
http://ocw.mit.edu

18.303 Linear Partial Differential Equations: Analysis and Numerics

Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

[^0]: ${ }^{1}$ More explicitly, $f\{\phi\}-f_{\epsilon}\{\phi\}=\int_{-\epsilon}^{\epsilon} \ln |x| \phi(x) d x \leq(\max \phi) \int_{-\epsilon}^{\epsilon} \ln |x| d x \rightarrow 0$, since you should have done the something like the last integral explicitly in the previous part.

