
18.303 Problem Set 4 Solutions

Problem 1: (10+10) n
(a) Â is self-adjoint under the inner product (u, v) ¯= uv/c, from class (and the 1d version

Ω
in homework), and hence the eigenfunctions are orthogonal for distinct eigenvalues (but not
necessarily normalized to IunI = 1), hence αn = (un, f)/(un, un). The expression u(x) =n e

G(x, x')f(x x' is just the solution to ˆ ˆ = αn un
')d2 Au = f , i.e. it is u = A−1f (x).

Ω n λn

(b) This is just (u, Â−1u)/(u, u), which is a Rayleigh quotient for the self-adjoint operator Â−1 ,
and hence (thanks to the min–max theorem) it is bounded above by the largest eigenvalue
of Â−1, which is 1/λ1 (the inverse of the smallest eigenvalue of Â). (Note that by positive-
definiteness 0 < λ1 < λ2 < · · · .)

Problem 2:

In this problem, we will solve the Laplacian eigenproblem −'2u = λu in a 2d radius-1 cylinder
r ≤ 1 with Dirichlet boundary conditions u|r=1Ω = 0 by “brute force” in Julia with a 2d finite-
difference discretization, and compare to the analytical Bessel solutions. You will find the IJulia
notebooks posted on the 18.303 website for Lecture 9 and Lecture 11 extremely useful! (Note: when
you open the notebook, you can choose “Run All” from the Cell menu to load all the commands in
it.)

(a) Using the notebook for a 100 × 100 grid, compute the 6 smallest-magnitude eigenvalues and
eigenfunctions of A with λi, Ui=eigs(Ai,nev=6,which=”SM”). The eigenvalues are given by
λi. The notebook also shows how to compute the exact eigenvalue from the square of the root
of the Bessel function. Compared with the high-accuracy λ1 value, compute the error Δλ1 in
the corresponding finite-difference eigenvalue from the previous part. Also compute Δλ1 for
Nx = Ny = 200 and 400. How fast is the convergence rate with Δx? Can you explain your
results, in light of the fact that the center-difference approximation we are using has an error
that is supposed to be ∼ Δx2? (Hint: think about how accurately the boundary condition
on ∂Ω is described in this finite-difference approximation.)

(b) Modify the above code to instead discretize '·c', by writing A0 as −GT CgG for some G ma
trix that implements ' and for some Cg matrix that multiplies the gradient by c(r) = r2 +1.
Draw a sketch of the grid points at which the components of ' are discretized—these will
not be the same as the (nx, ny) where u is discretized, because of the centered differences. Be
careful that you need to evaluate c at the ' grid points now! Hint: you can make the matrix c t

M1 in Julia by the syntax [M1;M2].
M2

Hint: Notice in the IJulia notebook from Lecture 11 how a matrix r is created from a column-
vector of x values and a row-vector of y values. You will need to modify these x and/or y
values to evaluate r on a new grid(s). Given the r matrix rc on this new grid, you can evaluate
c(r) on the grid by c = rc.^2 + 1, and then make a diagonal sparse matrix of these values
by spdiagm(reshape(c, prod(size(c)))).

(c) Using this A ≈ ' · c', compute the smallest-|λ| eigensolution and plot it. Given the eigen
function converted to a 2d Nx × Ny array u, as in the Lecture 11 notebook, plot u(r) as a
function of r, along with a plot of the exact Bessel eigenfunction J0(k0r) from the c = 1 case
for comparison.
plot(r[Nx/2:end,Ny/2], u[Nx/2:end,Ny/2])

k0 = so.newton(x -> besselj(0,x), 2.0)

plot(0:0.01:1, besselj(0, k0 * (0:0.01:1))/50)

1

Here, I scaled J0(k0r) by 1/50, but you should change this scale factor as needed to make the
plots of comparable magnitudes. Note also that the r array here is the radius evaluated on
the original u grid, as in the Lecture 11 notebook.

Can you qualitatively explain the differences?

Problem 3: (5+5+10+10+5 points)

Recall that the displacement u(x, t) of a stretched string [with fixed ends: u(0, t) = u(L, t) = 0]
u usatisfies the wave equation ∂

2
+ f(x, t) = ∂

2
, where f(x, t) is an external force density (pressure) ∂x2 ∂t2

on the string.
∂2 ũ ũ(a) Suppose that ũ solves ∂

2
+ f̃(x, t) = and satisfies ũ(0, t) = ũ(L, t) = 0. Now, consider ∂x2 ∂t2

ũ+ū̃u = �ũ = . Clearly, u(0, t) = u(L, t) = 0, so u satisfies the same boundary conditions. It 2
also satisfies the PDE:

∂2u 1 ∂2ũ ∂2ũ
= +

∂t2 2 ∂t2 ∂t2
1 ∂2ũ ∂2ũ

= + f̃ + + f̃
2 ∂x2 ∂x2

∂2u
= + f,

∂x2

f+f
since f =
˜ ˜̄

= �f̃ . The key factors that allowed us to do this are (i) linearity, and (ii) the 2
real-ness of the PDE (the PDE itself contains no i factors or other complex coefficients).

(b) Plugging u(x, t) = v(x)e−iωt and f(x, t) = g(x)e−iωt into the PDE, we obtain

∂2v −iωt −iωt −iωt + g = −ω2 v e e e ,
∂x2

and hence c t
∂2

− − ω2 v = g
∂x2

∂2

and Â = − − ω2 . The boundary conditions are v(0) = v(L) = 0, from the boundary
∂x2

conditions on u.

Since ω2 is real, this is in the general Sturm-Liouville form that we showed in class is self
adjoint.

Subtracting a constant from an operator just shifts all of the eigenvalues by that constant,
keeping the eigenfunctions the same. Thus Â is still positive-definite if ω2 is < the smallest
eigenvalue of −∂2/∂x2, and positive semidefinite if ω2 = the smallest eigenvalue. In this case,
we know analytically that the eigenvalues of −∂2/∂x2 with these boundary conditions are
(nπ/L)2 for n = 1, 2, So Â is positive-definite if ω2 < (π/L)2, it is positive-semidefinite if
ω2 = (π/L)2, and it is indefinite otherwise.

(c) We know that ˆ ') = 0 for x x '. Also, just as in class and as in the notes, the fact AG(x, x =
that ˆ ') = ') meas that G must be continuous (otherwise there would be a δ ' AG(x, x δ(x − x

factor) and ∂G/∂x must have a jump discontinuity:
 ∂G ∂G − = −1

∂x ∂xx=x1+ x=x1−

2

� �

�
�
�
�
�
��

for −∂2G/∂x2 to give δ(x − x '). We could also show this more explicitly by integrating:

x 1+0+ x 1+0+

ÂG dx = δ(x − x ') dx = 1
x1−0+ x1−0+

1 1x +0+ � x +0+

= −
∂G − ω2G dx,
∂x 1−0+ x1−0+ x

which gives the same result.

'Now, similar to class, we will solve it separately for x < x and for x > x ', and then im
'pose the continuity requirements at x = x to find the unknown coefficients.

' ˆ GFor x < x , AG = 0 means that ∂2
= −ω2G, hence G(x, x ') is some sine or cosine of ∂x2

ωx. But since G(0, x ') = 0, we must therefore have G(x, x ') = α sin(ωx) for some coefficient
α.

Similarly, for x > x ', we also have a sine or cosine of ωx. To get G(L, x ') = 0, the sim
plest way to do this is to use a sine with a phase shift: G(x, x ') = β sin(ω[L − x]) for some
coefficient β.

Continuity now gives two equations in the two unknowns α and β:

α sin(ωx ') = β sin(ω[L − x '])

αω cos(ωx ') = −βω cos(ω[L − x ']) + 1,

1
1 sin(ω[L−x]) 1 sin(ωx1)which has the solution α = , β = .ω cos(ωx1) sin(ω[L−x1])+sin(ωx1) cos(ω[L−x1]) ω cos(ωx1) sin(ω[L−x1])+sin(ωx1) cos(ω[L−x1])

This simplifies a bit from the identity sin A cos B + cos B sin A = sin(A + B), and hence _
1 sin(ωx) sin(ω[L − x ']) x < x '

G(x, x ') = ,' ω sin(ωL) sin(ωx ') sin(ω[L − x]) x ≥ x

which obviously obeys reciprocity.

Note that if ω is an eigenfrequency, i.e. ω = nπ/L for some n, then this G blows up.
The reason is that Â in that case is singular (the n-th eigenvalue was shifted to zero), and

A−1defining ˆ is more problematical. (Physically, this corresponds to driving the oscillating
string at a resonance frequency, which generally leads to a diverging solution unless there is
dissipation in the system.)

d2

(d) It is critical to get the signs right. Recall that we approximated by −DT D for a 1stdx2

derivative matrix D. Therefore, you want to make a matrix A = DT D − ω2I. In Matlab, A
= D’*D - omega^2 * eye(N) where N is the size of the matrix D = diff1(N) / dx with dx
= 1/(N+1). We make dk by dk = zeros(N,1); dk(k) = 1/dx. I used N = 100.

The resulting plots are shown in figure 1, for ω = 0.4π/L (left) and ω = 5.4π/L (right)
'and x = 0.5 and 0.75. As expected, for ω < π/L where it is positive-definite, the Green’s

function is positive and qualitatively similar to that for ω = 0, except that it is slightly curved.
For larger ω, though, it becomes oscillatory and much more interesting in shape. The exact
G and the finite-difference G match very well, as they should, although the match becomes
worse at higher frequencies—the difference approximations become less and less accurate as
the function becomes more and more oscillatory relative to the grid Δx, just as was the case

3

∣∣∣∣

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x

G
(x

,x
’)

ω = 0.4π/L

exact x’=0.5

exact x’=0.75

N=100 x’=0.5

N=100 x’=0.75

0 0.2 0.4 0.6 0.8 1
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

x

G
(x

,x
’)

ω = 5.4π/L

exact x’=0.5

exact x’=0.75

N=100 x’=0.5

N=100 x’=0.75

− ∂
2

Figure 1: Exact (lines) and finite-difference (dots) Green’s functions G(x, x ') for Â = − ω2 ,∂x2
'for two different ω values (left and right) and two different x values (red and blue).

for the eigenfunctions as discussed in class.

[If you try to plug in an eigenfrequency (e.g. 4π/L) for ω, you may notice that the exact
G blows up but the finite-difference G is finite. The reason for this is simple: the eigenvalues
of the finite-difference matrix DT D are not exactly (nπ/L)2, so the matrix is not exactly
singular, nor is it realistically possible to make it exactly singular thanks to rounding errors.
If you plug in something very close to an eigenfrequency, then G becomes very close to an
eigenfunction multipled by a large amplitude. It is easy to see why this is if you look at the
expansion of the solution in terms of the eigenfunctions.]

(e) For small ω, sin(ωy) ≈ ωy for any y, and hence

G(x, x ') →
1

 ω2L

_
 ω2x(L − x ')

 ω2x ' (L − x)

x < x '

x ≥ x '
,

which matches the Green’s function of − d
2

from class. (Equivalently, you get 0/0 as ω → 0dx2

and hence must use L’Hôpital’s rule or similar to take the limit.)

4

MIT OpenCourseWare
http://ocw.mit.edu

18.303 Linear Partial Differential Equations: Analysis and Numerics
Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

