18.303 Problem Set 3 Solutions

Problem 2: $(5+5+5+10+5)$
(a) Writing out the derivation in 18.02 fashion, this is tedious but straightforward:

$$
\begin{aligned}
\nabla \cdot(\mathbf{u} \times \mathbf{v})= & \left(\begin{array}{ccc}
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z}
\end{array}\right)\left(\begin{array}{l}
u_{y} v_{z}-u_{z} v_{y} \\
u_{z} v_{x}-u_{x} v_{z} \\
u_{x} v_{y}-u_{y} v_{x}
\end{array}\right) \\
= & \frac{\partial\left(u_{y} v_{z}-u_{z} v_{y}\right)}{\partial x}+\frac{\partial\left(u_{z} v_{x}-u_{x} v_{z}\right)}{\partial y}+\frac{\partial\left(u_{x} v_{y}-u_{y} v_{x}\right)}{\partial z} \\
= & \left(\frac{\partial u_{z}}{\partial y}-\frac{\partial u_{y}}{\partial z}\right) v_{x}+\left(\frac{\partial u_{x}}{\partial z}-\frac{\partial u_{z}}{\partial x}\right) v_{y}+\left(\frac{\partial u_{y}}{\partial x}-\frac{\partial u_{x}}{\partial y}\right) v_{z} \\
& u_{x}\left(\frac{\partial v_{y}}{\partial z}-\frac{\partial v_{z}}{\partial y}\right)+u_{y}\left(\frac{\partial v_{z}}{\partial x}-\frac{\partial v_{x}}{\partial z}\right)+u_{z}\left(\frac{\partial v_{x}}{\partial y}-\frac{\partial v_{y}}{\partial x}\right) \\
= & (\nabla \times \mathbf{u}) \cdot \mathbf{v}-\mathbf{u} \cdot(\nabla \times \mathbf{v})
\end{aligned}
$$

(A much more compact derivation is possible using Einstein notation and the Levi-Civitá tensor, but probably most of you haven't seen this notation.)
(b) Given the above identity, integration by parts is straightforwards:

$$
\begin{aligned}
\langle\mathbf{u}, \nabla \times \mathbf{v}\rangle & =\int_{\Omega} \overline{\mathbf{u}} \cdot(\nabla \times \mathbf{v})=\int_{\Omega}[\nabla \cdot(\overline{\mathbf{u}} \times \mathbf{v})+\overline{\nabla \times \mathbf{u}} \cdot \mathbf{v}] \\
& =\oiint_{\partial \Omega}(\overline{\mathbf{u}} \times \mathbf{v}) \cdot d \mathbf{S}+\langle\nabla \times \mathbf{u}, \mathbf{v}\rangle
\end{aligned}
$$

applying the divergence theorem in the second line. So, the surface term $\oiint_{\partial \Omega} \mathbf{w} \cdot d \mathbf{S}$ is for $\mathbf{w}=\overline{\mathbf{u}} \times \mathbf{v}$.
(c) We must have $(\overline{\mathbf{u}} \times \mathbf{v}) \cdot d \mathbf{S}=0$. Let $d \mathbf{S}=\mathbf{n} d S$, where \mathbf{n} is the outward unit normal vector at each point on $\partial \Omega$. Then we must have $\overline{\mathbf{u}} \times \mathbf{v} \perp \mathbf{n}$, which is true if, for example, both \mathbf{u} and \mathbf{v} are parallel to \mathbf{n} at the boundary. i.e. if $\mathbf{u} \times\left.\mathbf{n}\right|_{\partial \Omega}=0$. It is not necessary to require $\left.\mathbf{u}\right|_{\partial \Omega}=0$ on the boundary, and that answer will not be accepted as I specifically requested that you not constrain all the components of \mathbf{u} on the boundary.

Another way to see this is to write $(\overline{\mathbf{u}} \times \mathbf{v}) \cdot d \mathbf{S}=\mathbf{n} \cdot(\overline{\mathbf{u}} \times \mathbf{v}) d S=\mathbf{v} \cdot(\mathbf{n} \times \overline{\mathbf{u}}) d S=\overline{\mathbf{u}} \cdot(\mathbf{v} \times \mathbf{n}) d S$ by elementary triple-product identities, and hence we again see that it is sufficient to have $\mathbf{u} \times \mathbf{n}=0$ on the boundary.

Although I will accept the above answer, it is actually possible to contrive a slightly weaker condition: \mathbf{u} and \mathbf{v} can have components \perp to \mathbf{n} on the boundary, as long as those surfaceparallel components are in the same direction for both \mathbf{u} and \mathbf{v} (to obtain zero cross product). That is, suppose $\mathbf{p}(\mathbf{x})$ is some surface-parallel $(\mathbf{p} \perp \mathbf{n})$ vector field on $\partial \Omega . \underline{1}$ Then it is sufficient for the surface-parallel component of \mathbf{u} to be \perp to \mathbf{p} everywhere on the boundary, or equivalently $\left.\mathbf{u} \cdot \mathbf{p}\right|_{\partial \Omega}=0$.
[Actually, there are other possible conditions on \mathbf{u} if we allow non-local boundary conditions, where \mathbf{u} at one point on the boundary is related to \mathbf{u} at another point. For example, if Ω is a cube and \mathbf{u} is periodic (i.e. \mathbf{u} on one face equals \mathbf{u} on the opposite face), then the

[^0]$\oiint_{\partial \Omega}$ vanishes because each face of the cube cancels the opposite face, without requiring any component of \mathbf{u} to be zero.]
(d) We just "integrate by parts" twice:
\[

$$
\begin{aligned}
&\langle\mathbf{u}, \nabla \times \nabla \times \mathbf{v}\rangle=\int_{\Omega} \overline{\mathbf{u}} \cdot(\nabla \times \nabla \times \mathbf{v})=\oiint_{\partial S}[\overline{\mathbf{u}} \times(\nabla \times \mathbf{v})] \cdot d \mathbf{S} \\
&+\int_{\Omega}(\nabla \times \overline{\mathbf{u}}) \cdot(\nabla \times \mathbf{v}) \\
&=\oiint_{\partial \Omega}[(\nabla \times \overline{\mathbf{u}}) \times \mathbf{v}] \cdot d \mathbf{S}+\int_{\Omega}(\nabla \times \nabla \times \overline{\mathbf{u}}) \cdot \mathbf{v}=\langle\nabla \times \nabla \times \mathbf{u}, \mathbf{v}\rangle
\end{aligned}
$$
\]

where the surface terms cancel if either $\overline{\mathbf{u} \times\left.\mathbf{n}\right|_{\partial \Omega}=0}$ or $(\nabla \times \mathbf{u}) \times\left.\mathbf{n}\right|_{\partial \Omega}=0$, that is if either \mathbf{u} or its curl are normal to the surface. (As in the previous part, one can actually weaken this slightly, but this is sufficient for our purposes.)

To check definiteness, carry integration by parts "halfway" through:

$$
\langle\mathbf{u}, \nabla \times \nabla \times \mathbf{u}\rangle=\int_{\Omega}|\nabla \times \mathbf{u}|^{2} \geq 0
$$

so it is positive semidefinite. It is not positive-definite since $\nabla \times \mathbf{u}=0$ for $\mathbf{u}=\nabla \phi \neq 0$ for any non-constant scalar field ϕ, and we can easily choose such a ϕ such that $\nabla \phi$ satisfies the boundary conditions (e.g., choose ϕ so that it is constant in a neighborhood of $\partial \Omega$).
(e) Taking the curl of both sides of $\nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t}$, we obtain $\nabla \times \nabla \times \mathbf{E}=-\nabla \times \frac{\partial \mathbf{B}}{\partial t}=-\frac{\partial}{\partial t} \nabla \times \mathbf{B}=$ $-\frac{\partial^{2} \mathbf{E}}{\partial t^{2}}$. That is, we have

$$
\frac{\partial^{2} \mathbf{E}}{\partial t^{2}}=\hat{A} \mathbf{E}
$$

where $\hat{A}=-\nabla \times \nabla \times$. From the previous parts, for $\mathbf{E} \perp \mathbf{n}$ at the surface, this \hat{A} is self-adjoint and negative semidefinite, and hence we have a hyperbolic equation.

As in class, we therefore expect orthogonal eigenfunctions and real $\lambda \leq 0$, and hence oscillating "normal mode" solutions with eigenfrequencies $\omega=\sqrt{-\lambda}$.
[Technically, we also obtain $\lambda=0$ solutions which are non-oscillatory-from above, these are nullspace solutions $\mathbf{E}=\nabla \phi$ for some ϕ, which physically correspond to the time-independent fields of fix charge distributions, where $-\phi$ is the potential and $\nabla \cdot \mathbf{E}=\nabla^{2} \phi$ is the charge density. Everything else, all of the other eigenfunctions, are oscillating solutions.]

Problem 2: $(5+5+5+5+10)$
See also the IJulia notebook posted with the solutions.
(a) Setting the slopes to be zero at R_{1} and R_{2} simply gives

$$
\alpha J_{m}^{\prime}(k r)+\beta Y_{m}^{\prime}(k r)=0
$$

at the two radii, or $E\binom{\alpha}{\beta}=0$ where

$$
E=\left(\begin{array}{cc}
J_{m}^{\prime}\left(k R_{1}\right) & Y_{m}^{\prime}\left(k R_{1}\right) \\
J_{m}^{\prime}\left(k R_{2}\right) & Y_{m}^{\prime}\left(k R_{2}\right)
\end{array}\right) .
$$

Hence, writing $f_{m}(k)=\operatorname{det} E$, we get

$$
f_{m}(k)=J_{m}^{\prime}\left(k R_{1}\right) Y_{m}^{\prime}\left(k R_{2}\right)-J_{m}^{\prime}\left(k R_{2}\right) Y_{m}^{\prime}\left(k R_{1}\right) \text {. }
$$

Figure 1: Plot of $f_{m}(k)$ for $m=0,1,2$.

Given a k for which $f_{m}(k)=0$, then we can solve for the nullspace of E by arbitrarily choosing a scaling such that $\alpha=1$ and solving for β from the first or second rows of $E\binom{\alpha}{\beta}=0$:

$$
\beta=-\frac{J_{m}^{\prime}\left(k R_{1}\right)}{Y_{m}^{\prime}\left(k R_{1}\right)}=-\frac{J_{m}^{\prime}\left(k R_{2}\right)}{Y_{m}^{\prime}\left(k R_{2}\right)}
$$

(b) The plot is shown in Figure 1. Note that $f_{m}(k)$ for $m>0$ has a divergence as $k \rightarrow 0$, so we used the ylim command to rescale the vertical axis (otherwise it would be hard to read the plot!); see the solution IJulia notebook.
(c) We'll use the Scilab newton function, similar to class, to find the roots, with initial guesses provided by our plot in Figure 1 . We find $k_{1} \approx 3.196578, k_{2} \approx 6.31234951$, and $k_{3} \approx$ 9.4444649. See the solutions notebook.
(d) See the IJulia notebook. Using our k_{1} and k_{2} from part (c) and our α and β from part (a), we find that $\int_{R_{1}}^{R_{2}} r u_{0,1}(r) u_{0,2}(r) d r \approx 10^{-15}$, which is zero up to roundoff errors.
(e) Here, we have $\hat{A}=c \nabla^{2}$, and obtain:
(i) At the origin, we can't blow up, and therefore we only have J for $r<R_{1}$, but we have both J and Y outside this. Hence

$$
u(r, \theta)=[A \cos (m \theta)+B \sin (m \theta)] \times \begin{cases}\alpha J_{m}\left(k_{1} r\right) & r<R_{1} \\ \beta J_{m}\left(k_{2} r\right)+\gamma Y_{m}\left(k_{2} r\right) & r>R_{1}\end{cases}
$$

Note that the angular dependence must be the same for all r in order to have continuity at $r=R_{1}$. However, we are not guaranteed that $k_{1}=k_{2}$! In particular, we want $\hat{A} u=\lambda u$ for some λ, and plugging in the Bessel functions and the values of c we find $\lambda=-2 k_{1}^{2}=-k_{2}^{2}$. Hence, we let $k_{2}=k$ and $k_{1}=k / \sqrt{2}$.
(ii) To get a finite $\hat{A} u$, we must have u and $\partial u / \partial r$ continuous at $r=R_{1}$. Combined with $u=0$ at $r=R_{2}$, this gives the equations

$$
\left[\begin{array}{ccc}
-J_{m}\left(k R_{1} / \sqrt{2}\right) & J_{m}\left(k R_{1}\right) & Y_{m}\left(k R_{1}\right) \\
-J_{m}^{\prime}\left(k R_{1} / \sqrt{2}\right) & J_{m}^{\prime}\left(k R_{1}\right) & Y_{m}^{\prime}\left(k R_{1}\right) \\
0 & J_{m}\left(k R_{2}\right) & Y_{m}\left(k R_{2}\right)
\end{array}\right]\left(\begin{array}{c}
\alpha \\
\beta \\
\gamma
\end{array}\right)=E_{m}(k)\left(\begin{array}{c}
\alpha \\
\beta \\
\gamma
\end{array}\right)=0
$$

where the first two rows are the continuity conditions and the last row is the Dirichlet condition, and we have defined a matrix $E_{m}(k)$.
(iii) We simply need $f_{m}(k)=\operatorname{det} E_{m}(k)$ to solve for the solutions k and hence the eigenvalues.

MIT OpenCourseWare
http://ocw.mit.edu

18.303 Linear Partial Differential Equations: Analysis and Numerics

Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

[^0]: ${ }^{1}$ By the "hairy ball theorem" of topology, \mathbf{p} must vanish somewhere on $\partial \Omega$ if Ω is simply connected (no holes), at which point \mathbf{u} must be parallel to \mathbf{n}.

