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18.303 Problem Set 2 

Due Monday, 22 September 2014. 

Problem 2: Modified inner products for column vectors 

Consider the inner product (x,y) = x ∗By from class (lecture 5.5 notes), where the vectors are in 
CN and B is an N × N Hermitian positive-definite matrix. 

(a) Show that this inner product satisfies the required properties of inner products from class: 
(x,y) = (y,x), (x,x) > 0 except for x = 0. (Linearity (x, αy +z) = α(x,y)+(x, z) is obvious 
from linearity the of matrix operations; you need not show it.) 

(b) If M is an arbitrary (possibly complex) N × N matrix, define the adjoint M † by (x,My) = 
(M † x,y) (for all x,y). (In this problem, we use † instead of ∗ for the adjoint in order to 
avoid confusion with the conjugate transpose: for this inner product, the adjoint M † is not 

the conjugate transpose M∗ = MT .) Give an explicit formula for M † in terms of M and B . 

(c) Using your formula from above, show that M † = M (i.e., M is self-adjoint/Hermitian for this 
inner product) if M = B−1A for some A = A∗ . 

Problem 2: Finite-difference approximations 

For this question you may find it helpful to refer to the notes and readings from lecture 3. Suppose 
that we want to compute the operation 

d du 
Âu = c 

dx dx 

for some smooth function c(x) (you can assume c has a convergent Taylor series everywhere). Now, 
we want to construct a finite-difference approximation for Â with u(x) on Ω = [0, L] and Dirichlet 
boundary conditions u(0) = u(L) = 0, similar to class, approximating u(mΔx) ≈ um for M equally 

Lspaced points m = 1, 2, . . . ,M , u0 = uM+1 = 0, and Δx = .
M+1

(a) Using center-difference operations, construct a finite-difference approximation for Âu evalu
ated at mΔx. (Hint: use a centered first-derivative evaluated at grid points m + 0.5, as in 
class, followed by multiplication by c, followed by another centered first derivative. Do not 

′ ′ ′′ separate Au ˆ by the product rule into c u + cu first, as that will make the factorization in 
part (d) more difficult.) 

(b) Show that your finite-difference expressions correspond to approximating Âu by Au where 
u is the column vector of the M points um and A is a real-symmetric matrix of the form 
A = −DTCD (give C, and show that D is the same as the 1st-derivative matrix from lecture). 

(c) In Julia, the diagm(c) command will create a diagonal matrix from a vector c. The function 
diff1(M) = [ [1.0 zeros(1,M-1)]; diagm(ones(M-1),1) - eye(M) ] 
will allow you to create the (M +1)×M matrix D from class via D = diff1(M) for any given 
value of M . Using these two commands, construct the matrix A from part (d) for M = 100 
and L = 1 and c(x) = e3x via 
L = 1
 
M = 100
 
D = diff1(M)
 
dx = L / (M+1)
 
x = dx*0.5:dx:L # sequence of x values from 0.5*dx to <= L in steps of dx
 
C = ....something from c(x)...hint: use diagm...
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A = -D’ * C * D / dx^2 
You can now get the eigenvalues and eigenvectors by λ, U = eig(A), where λ is an array of 
eigenvalues and U is a matrix whose columns are the corresponding eigenvectors (notice that 
all the λ are < 0 since A is negative-definite). 

(i) Plot the eigenvectors for the smallest-magnitude four eigenvalues. Since the eigenvalues 
are negative and are sorted in increasing order, these are the last four columns of U . 
You can plot them with: 
using PyPlot
 
plot(dx:dx:L-dx, U[:,end-3:end])
 
xlabel("x"); ylabel("eigenfunctions")
 
legend(["fourth", "third", "second", "first"])
 

(ii) Verify that the first two eigenfunctions are indeed orthogonal with dot(U[:,end], 
U[:,end-1]) in Julia, which should be zero up to roundoff errors ; 10−15 . 

(iii) Verify that you are getting second-order convergence of the eigenvalues: compute the 
smallest-magnitude eigenvalue λM[end] for M = 100, 200, 400, 800 and check that the 
differences are decreasing by roughly a factor of 4 (i.e. |λ100 − λ200| should be about 4 
times larger than |λ200 −λ400|, and so on), since doubling the resolution should multiply 
errors by 1/4. 

(d) For c(x) = 1, we saw in class that the eigenfunctions are sin(nπx/L). How do these compare 
to the eigenvectors you plotted in the previous part? Try changing c(x) to some other function 
(note: still needs to be real and > 0), and see how different you can make the eigenfunctions 
from sin(nπx/L). Is there some feature that always remains similar, no matter how much 
you change c? 

Problem 3: Discrete diffusion 

In this problem, you will examine thermal conduction in a system of a finite number N of pieces, 
and then take the N → ∞ limit to recover the heat equation. In particular: 

• You have a metal bar of length L and cross-sectional area a (hence a volume La), with a 
varying temperature T along the rod. We conceptually subdivide the rod into N (touching) 
pieces of length Δx = L/N . 

• If Δx is small, we can approximate each piece as having a uniform temperature Tn within the 
piece (n = 1, 2, . . . , N), giving a vector T of N temperatures. 

• Suppose that the rate q (in units of W) at which heat flows across the boundary from piece 
κa n to piece n + 1 is given by q = (Tn − Tn+1), where κ is the metal’s thermal conductivity 
Δx

(in units of W/m·K). That is, piece n loses energy at a rate q, and piece n + 1 gains energy 
at the same rate, and the heat flows faster across bigger areas, over shorter distances, or for 
larger temperature differences. Note that q > 0 if Tn > Tn+1 and q < 0 if Tn < Tn+1: heat 
flows from the hotter piece to the cooler piece. 

• If an amount of heat ΔQ (in J) flows into a piece, its temperature changes by ΔT = 
ΔQ/(cρaΔx), where c is the specific heat capacity (in J/kg·K) and ρ is the density (kg/m3) 
of the metal. 

• The rod is insulated: no heat flows out the sides or through the ends. 

Given these assumptions, you should be able to answer the following: 
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(a) “Newton’s law of cooling” says that that the temperature of an object changes at a rate (K/s) 
proportional to the temperature difference with its surroundings. Derive the equivalent here: 

nshow that our assumptions above imply that dT = α(Tn+1 − Tn) + α(Tn−1 − Tn) for some 
dt 

constant α, for 1 < n < N . Also give the (slightly different) equations for n = 1 and n = N . 

(b) Write your equation from the previous part in matrix form: dT = AT for some matrix A.
dt 

(c) Let T (x, t) be the temperature along the rod, and suppose Tn(t) = T ([n − 0.5]Δx, t) (the 
temperature at the center of the n-th piece). Take the limit N → ∞ (with L fixed, so that 

∂T ˆΔx = L/N → 0), and derive a partial differential equation = AT . What is Â? (Don’t 
∂t 

worry about the x = 0, L ends until the next part.) 

(d) What are the boundary conditions on T (x, t) at x = 0 and L? Check that if you go backwards, 
and form a center-difference approximation of Â with these boundary conditions, that you 
recover the matrix A from above. 

(e) How does your Â change in the N → ∞ limit if the conductivity is a function κ(x) of x? 

(f) Suppose that instead of a thin metal bar (1d), you have an L×L thin metal plate (2d), with 
a temperature T (x, y, t) and a constant conductivity κ. If you go through the steps above 
dividing it into N ×N little squares of size Δx×Δy, what PDE do you get for T in the limit 
N → ∞? (Many of the steps should be similar to above.) 
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