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9. Fermionic integrals 

9.1. Bosons and fermions. In physics there exist two kinds of particles — bosons and fermions. So 
far we have dealt with bosons only, but many important particles are fermions: e.g., electron, proton, 
etc. Thus it is important to adapt our techniques to the fermionic case. 

In quantum theory, the difference between bosons and fermions is as follows: if the space of states 
of a single particle is H then the space of states of the system of k such particles is Sk H for bosons 
and ΛkH for fermions. In classical theory, this means that the space of states of a bosonic particle is a 
usual real vector space (or more generally a manifold), while for a fermionic particle it is an odd vector 
space. Mathematically “odd” means that the ring of smooth functions on this space (i.e. the ring of 
classical observables) is an exterior algebra (unlike the case of a usual, even space, for which the ring 
of polynomial functions is a symmetric algebra). 

More generally, one may consider systems of classical particles or fields some of which are bosonic 
and some fermionic. In this case, the space of states will be a supervector space, i.e. the direct sum of 
an even and an odd space (or, more generally, a supermanifold — a notion we will define below). 

When such a theory is quantized using the path integral approach, one has to integrate functions 
over supermanifolds. Thus, we should learn to integrate over supermanifolds and then generalize to 
this case our Feynman diagram techniques. This is what we do in this section. 

9.2. Supervector spaces. Let k be a field of characteristic zero. A supervector space (or shortly, 
superspace) over k is just a Z/2-graded vector space: V = V0 ⊕ V1. If  V0 = kn and V1 = km then 

|mV is denoted by kn . The notions of a homomorphism, direct sum, tensor product, dual space for 
supervector spaces are defined in the same way as for Z/2-graded vector spaces. In other words, the 
tensor category of supervector spaces is the same as that of Z/2-graded vector spaces. 

However, the notions of a supervector space and a Z/2-graded vector space are not the same. The 
difference is as follows. The category of vector (and hence Z/2-graded vector) spaces has an additional 
symmetry structure, which is the standard isomorphism V ⊗W → W ⊗V (given by v⊗w → w⊗v). This 
isomorphism allows one to define symmetric powers SmV , exterior powers ΛmV , etc. For supervector 
spaces, there is also a symmetry V ⊗ W → W ⊗ V , but it is defined differently. Namely, v ⊗ w goes 
to (−1)mnw ⊗ v, v ∈ Vm, w  ∈ Vn (m, n ∈ {0, 1}). In other words, it is the same as usual except that if 
v, w are odd then v ⊗ w → −w ⊗ v. As a result, we can define the superspaces SmV and ΛmV for a 
superspace V , but they are not the same as the symmetric and exterior powers in the usual sense. For 
example, if V is purely odd (V = V1), then SmV is the exterior m-th power of V , and  ΛmV is the m-th 
symmetric power of V (purely even for even m and purely odd for odd m). 

For a superspace  V , let  ΠV be the same space with opposite parity, i.e. (ΠV )i = V1−i, i = 0, 1. With 
this notation, the equalities explained in the previous paragraph can be written as: SmV = Πm(ΛmΠV ), 
ΛmV = Πm(SmΠV ). 

Let V = V0 ⊕ V1 be a finite dimensional superspace. Define the algebra of polynomial functions on 
∗V , O(V ), to be the algebra SV (where symmetric powers are taken in the super sense). Thus, O(V ) =  

∗ ∗SV0 ⊗ ΛV1 , where  V0 and V1 are regarded as usual spaces. More explicitly, if x1, . . . , xn are linear 
coordinates on V0, and  ξ1, . . . , ξm are linear coordinates on V1, then  O(V ) =  k[x1, . . . , xn, ξ1, . . . , ξm], 
with defining relations 

xixj = xj xi, xiξr = ξr xi, ξr ξs = −ξsξr 

Note that this algebra is itself a (generally, infinite dimensional) supervector space, and is commutative 
in the supersense. Also, if V, W are two superspaces, then O(V ⊕ W ) =  O(V ) ⊗ O(W ), where the 
tensor product of algebras is understood in the supersense (i.e. (a ⊗ b)(c ⊗ d) =  (−1)p(b)p(c)(ac ⊗ bd), 
where p(x) is the parity of x). 

9.3. Supermanifolds. Now assume that k = R. Then by analogy with the above for any supervector 
∗ space V we can define the algebra of smooth functions, C∞(V ) :=  C∞(V0) ⊗ ΛV1 . In fact, this is a 

special case of the following more general setting. 

Definition 9.1. A supermanifold M is a usual manifold M0 with a sheaf C∞ of Z/2Z graded algebras M 
(called the structure sheaf), which is locally isomorphic to C∞ ⊗ Λ(ξ1, . . . , ξm).M0 
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The manifold M0 is called the reduced manifold of M . The dimension of M is the pair of integers 
dim M0|m. 

For example, a supervector space V is a supermanifold of dimension dim V0| dim V1. Another (more 
general) example of a supermanifold is a superdomain U := U0 × V1, i.e. a domain U0 ⊂ V0 together 

∗with the sheaf C∞ ⊗ ΛV1 . Moreover, the definition of a supermanifold implies that any supermanifold U 
is “locally isomorphic” to a superdomain. 

Let M be a supermanifold. An open set U in M is the supermanifold (U0, C∞|U0), where U0 is an M 
open subset in M0. 

By the definition, supermanifolds form a category SMAN . Let us describe explicitly morphisms 
in this category, i.e. maps F : M → N between supermanifolds M and N . By the definition, it 
suffices to assume that M, N are superdomains, with global coordinates x1, . . . , xn, ξ1, . . . , ξm, and  
y1, . . . , yp, η1, . . . , ηq , respectively (here xi, yi are even variables, and ξi, ηi are odd variables). Then the 
map F is defined by the formulas: 

yi = f0,i(x1, . . . , xn) +  f j1j2(x1, . . . , xn)ξj1ξj2 + · · ·  ,2,i 

jηi = a1,i(x1, . . . , xn)ξj + aj1j2j3(x1, . . . , xn)ξj1ξj2ξj3 + · · ·  ,3,i

j
where f0,i, f

j1j2 , a1,i, a
j
3
1
,i
,j2,j3 , . . .  are usual smooth functions, and we assume summation over repeated 2,i 

indices. These formulas, determine F completely, since for any g ∈ C∞(N) one can find g◦F ∈ C∞(M) 
|by Taylor’s formula. For example, if M = N = R1 2 and F (x, ξ1, ξ2) =  (x+ ξ1 ξ2, ξ1, ξ2), and if g = g(x), 

then g ◦ F (x, ξ1, ξ2) =  g(x + ξ1ξ2) =  g(x) +  g′(x)ξ1 ξ2. 
Remark. For this reason, one may consider only C∞ (and not Cr ) functions on supermanifolds. 

Indeed, if for example g(x) is  a  Cr function of one variable which is not differentiable r + 1 times, then 
the expression g(x + 

�r+1 
ξ2i−1ξ2i) will not be defined, because the coefficient of ξ1 · · · ξ2r+2 in this i=1 

expression should be g(r+1)(x), but this derivative does not exist. 

9.4. Supermanifolds and vector bundles. Let M0 be a manifold, and E be a vector bundle on 
M0. Then we can define the supermanifold M := Tot(ΠE), the total space of E with changed parity. 

∗Namely, the reduced manifold of M is M0, and the structure sheaf C∞ is the sheaf of sections of ΛE .M 
This defines a functor S : BUN → SMAN , from the category of manifolds with vector bundles to the 
category of supermanifolds. We also have a functor S∗ in the opposite direction: namely, S∗(M) is  the  
manifold M0 with the vector bundle (R/R2)∗, where  R is the nilpotent radical of C∞ 

M . 
The following proposition (whose proof we leave as an exercise) gives a classification of supermani-

folds. 

Proposition 9.2. S∗S = Id, and  SS∗ = Id  on isomorphism classes of objects. 

The usefulness of this proposition is limited by the fact that, as one can see from the above description 
of maps between supermanifolds, SS∗ is not the identity on morphisms (e.g. it maps the automorphism 

|2x → x + ξ1ξ2 of R1 to Id), and hence, S is not an equivalence of categories. In fact, the category of 
supermanifolds is not equivalent to the category of manifolds with vector bundles (namely, the category 
of supermanifolds “has more morphisms”). 

Remark. The relationship between these two categories is quite similar to the relationship between 
the categories of (finite dimensional) filtered and graded vector spaces, respectively (namely, for them 
we also have functors S, S∗ with the same properties – check it!). Therefore in supergeometry, it is 
better to avoid using realizations of supermanifolds as S(M0, E), similarly to how in linear algebra it 
is better to avoid choosing a grading on a filtered space. 

9.5. Integration on superdomains. We would now like to develop integration theory on superman-
ifolds. Before doing so, let us recall how it is done for usual manifolds. In this case, one proceeds as 
follows. 

1. Define integration of compactly supported (say, smooth) functions on a domain in Rn . 
2. Find the transformation formula for the integral under change of coordinates (i.e. discover the 

factor |J |, where  J is the Jacobian). 
3. Define a density on a manifold to be a quantity which is locally the same as a function, but 

multiplies by |J | under coordinate change (unlike true functions, which don’t multiply by anything). 
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Then define integral of compactly supported functions on the manifold using partitions of unity. The 
independence of the integral on the choices is guaranteed by the change of variable formula and the 
definition of a density. 

We will now realize this program for supermanifolds. We start with defining integration over super-
domains. 

∗Let V = V0 ⊕ V1 be a supervector space. The Berezinian of V is the line ΛtopV0 ⊗ ΛtopV1 . Suppose 
that V is equipped with a nonzero element dv of the Berezinian (called a supervolume element). 

∗Let U0 be an open set in V0, and  f ∈ C∞(U) ⊗ ΛV be a compactly supported smooth function 1 ∗on the superdomain U := U0 × V1 (i.e. f = fi ⊗ ωi, fi ∈ C∞(U), ωi ∈ ΛV1 , and  fi are compactly 
supported). Let dv0, dv1 be volume forms on V0, V1 such that dv = dv0/dv1. 

Definition 9.3. The integral 
U f(v)dv is (f(v), (dv1 )−1)dv0.U0

It is clear that this quantity depends only on dv and not on dv0 and dv1 separately. 
Thus, f(v)dv is defined as the integral of the suitably normalized top coefficient of f (expanded 

∗with respect to some homogeneous basis of ΛV1 ). To write it in coordinates, let ξ1, . . . , ξm be a linear 
dx1···dxnsystem of coordinates on V such that dv = dξ1···dξm 

(such coordinate systems will be called unimodular 
with respect to dv). Then f(v)dv equals ftop(x1, . . . , xn)dx1 · · · dxn, where  ftop is the coefficient of 
ξ1 · · · ξn in the expansion of f . 

9.6. The Berezinian of a matrix. Now we generalize to the supercase the definition of determinant 
(since we need to generalize Jacobian, which is a determinant). 

Let R be a supercommutative ring. Fix two nonnegative integers m, n. Let  A be a n + m by n + m 
matrix over R. Split A in the blocks A11, A12, A21, A22 so that A11 is n by n, and  A22 is m by m. 
Assume that the matrices A11, A22 have even elements, while A21 and A12 have odd elements. Assume 
also that A22 is invertible. 

Definition 9.4. The Berezinian of A is the element 

Ber(A) :=  
det(A11 − A12A

−1A21)22 ∈ R
det(A22) 

(where the determinant of the empty matrix is agreed to be 1; so for m = 0 one has BerA = det  A, and  
for n = 0 one has BerA = (det  A)−1). 

Remark. Recall for comparison that if A is purely even then 

det(A) := det(A11 − A12A
−1A21) det(A22).22 

The Berezinian has the following simpler description. Any matrix A as above admits a unique 
factorization A = A+A0A−, where  A+, A0, A− are as above, and in addition A+, A− are block upper 
(respectively, lower) triangular with 1 on the diagonal, while A0 is block diagonal. Then Ber(A) =  
det((A0)11)/ det((A0)22). 

Proposition 9.5. If A, B be matrices as above, then Ber(AB) =  Ber(A)Ber(B). 

Proof. From the definition using triangular factorization, it is clear that it suffices to consider the case 
A = A−, B = B+. Let  X = (A−)21, Y = (B+)12 (matrices with odd elements). Then the required 
identity is 

det(1 − Y (1 + XY  )−1X) = det(1 + XY  ). 

To prove this relation, let us take the logarithm of both sides and expand using Taylor’s formula. Then 
the left hand side gives 

− Tr(Y (1 + XY  )k (XY  )k−1X)/k 
k≥1 

Using the cyclic property of the trace, we transform this to 

Tr((1 + XY  )k (XY  )k )/k 
k≥1 
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(the minus disappears since X, Y have odd elements). Summing the series, we find that the last 
expression equals 

−Tr ln(1 − (1 + XY )−1XY ) =  Tr  ln(1  +  XY ), 

as desired. � 

The additive analog of Berezinian is supertrace. Namely, for A as above, sTrA = TrA11 − TrA22. It  
is the correct superanalogue of the usual trace, as it satisfies the equation sTr(AB) = sTr(BA) (while 
the usual trace does not). The connection between the supertrace and the Berezinian is given by the 
formula 

A) =  esTr(A)Ber(e . 

Exercise. Prove this formula. 

∗9.7. Berezin’s change of variable formula. Let V be a vector space, f ∈ ΛV , v ∈ V . Denote  by  
∂f the result of contraction of f with v.∂v 

Let U, U ′ be superdomains, and F : U → U ′ be a morphism. As explained above, given linear 
coordinates x1, . . . , xn, ξ1, . . . , ξm on U and y1, . . . , yp, η1, . . . , ηq on U ′, we  can  describe  f by expressing 
yi and ηi as functions of xj and ξj . Define the Berezin matrix of F , A := DF (x, ξ) by the formulas: 

∂ηi ), A22 = (  
∂ηi

A11 = (  
∂yi ), A12 = (  

∂yi ), A21 = (  ). 
∂xj ∂ξj ∂xj ∂ξj 

Clearly, this is a superanalog of the Jacobi matrix. 
The main theorem of supercalculus is the following theorem. 

Theorem 9.6. (Berezin) Let g be a smooth function with compact support on U ′, and  F : U → U ′ be 
an isomorphism. Let dv, dv′ be supervolume elements on U, U ′. Then  

g(v ′)dv′ = g(F (v))|BerDF (v)|dv, 
U � U 

where the Berezinian is computed with respect to unimodular coordinate systems. 

Remark. If f(ξ) =  a+terms containing ξj then by definition |f(ξ)| := f(ξ) is  a >  0 and  −f(ξ) if  
a <  0. 

Proof. The chain rule of the usual calculus extends verbatim to supercalculus. Also, we have shown 
that Ber(AB) = Ber(A)BerB. Therefore, if we know the statement of the theorem for two isomorphisms 
F1 : U2 → U1 and F2 : U3 → U2, then we know it for the composition F1 ◦ F2. 

′ ′ 
1, . . . , ξ

′Let F (x1, . . . , xn, ξ1, . . . , ξm) = (x1, . . . , x , ξ′ m). From what we just explained it follows that n

it suffices to consider the following cases. 
1. xi depend only on xj , j = 1, . . . , n, and  ξ′ = ξi.i 
2. xi = xi + zi, where  zi lie in the ideal generated by ξj , and  ξ′ = ξi.i 
3. xi = xi.

Indeed, it is clear that any isomorphism F is a composition of isomorphisms of the type 1, 2, 3.

In case 1, the statement of the theorem follows from the usual change of variable formula. Thus it


suffices to consider cases 2 and 3. 
In case 2, it is sufficient to consider the case when only one coordinate is changed by F , i.e. x = x1 +z,1 

and xi = xi for i ≥ 2. In this case we have to show that the integral of 

∂z 
g(x1 + z, x2, . . . , xn, ξ)(1 + ) − g(x, ξ)

∂x1 

is zero. But this follows easily upon expansion in powers of z, since all the terms are manifestly total 
derivatives with respect to x1. 

In case 3, we can also assume ξ′ = ξi, i ≥ 2, and a similar (actually, even simpler) argument proves i 
the result. � 
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9.8. Integration on supermanifolds. Now we will define densities on supermanifolds. Let M be a 
supermanifold, and {Uα

|
} be an open cover of M together with isomorphisms fα : Uα → U ′ 

α , where  U ′ 
α 

is a superdomain in Rn m. Let  gαβ : fβ (Uα ∩ Uβ ) → fα(Uα ∩ Uβ ) be the transition map fαf−1. Then  β 

a density  s on M is a choice of an element sα ∈ C∞ 
M (Uα) for  each  α, such that on Uα ∩ Uβ one has 

sβ (z) =  sα(z)|Ber(gαβ )(fβ (z))|. 
Remark. It is clear that a density on M is a global section of a certain sheaf on M , called the sheaf 

of densities. 
Now, for any (compactly supported) density ω on M , the integral 

M ω is well defined. Namely, it 
is defined as is usual calculus: one uses partition of unity φα such that Suppφα ⊂ (Uα)0 are compact 
subsets, and sets 

M ω := φαω (where the summands can be defined using fα). Berezin’sα M 
theorem guarantees then that the final answer will be independent on the choices made. 

9.9. Gaussian integrals in an odd space. Now let us generalize to the odd case the theory of 
Gaussian integrals, which was, in the even case, the basis for the path integral approach to quantum 
mechanics and field theory. 

Recall first the notion of Pfaffian. Let A be a skew-symmetric matrix of even size. Then the 
determinant of A is the square of a polynomial in the entries of A. This polynomial is determined by 
this condition up to sign. The sign is usually fixed by requiring that the polynomial should be 1 for the 

0 1direct sum of matrices . With this convention, this polynomial is called the Pfaffian of A and −1 0  
denoted PfA. The Pfaffian obviously has the property Pf(XT AX) =  Pf(A) det(X) for any matrix X . 

Let now V be an 2m-dimensional vector space with a volume element dv, and  B a skew-symmetric 
bilinear form on V .  We define  the Pfaffian  PfB of B to be the Pfaffian of the matrix of B in any 
unimodular basis by the above transfoamtion formula, it does not depend on the choice of the basis). 
It is easy to see (by reducing B to canonical form) that 

mB 
= Pf(B)dv. 

∧
m! 

In terms of matrices, this translates into the following (well known) formula for the Pfaffian of a skew 
symmetric matrix of size 2m: 

Pf(A) =  εσ aiσ(i) , 
σ∈Πm i∈{1,...,2m},i<σ(i) 

where Πm is the set of pairings of {1, . . . , 2m}, and  εσ is the sign of the permutation sending 1, . . . , 2m 
to i1, σ(i1), . . . , im, σ(im) (where  ir < σ(ir ) for all r). For example, for m = 2 (i.e. a 4 by 4 matrix), 

Pf(A) =  a12a34 + a14a23 − a13a24. 

Now consider an odd vector space V of dimension 2m with a volume element dξ. Let  B be a 
symmetric bilinear form on V (i.e. a skewsymmetric form on ΠV ). Let ξ1, . . . , ξ2m be unimodular linear 
coordinates on V (i.e. dξ = dξ1 ∧ · · · ∧ dξm). Then if ξ = (ξ1, . . . , ξn) then  B(ξ, ξ) =  i,j bij ξiξj , where  
bij is a skewsymmetric matrix. 

Proposition 9.7. 
1
2 B(ξ,ξ)(dξ)−1 = Pf(B).e 

V 

BProof. The integral equals ∧
m

m!dξ , which  is  Pf(B). � 

∗Example. Let V is a finite dimensional odd vector space, and Y = V ⊕ V . The  space  Y has 
∗ ∗a canonical volume element dvdv , defined as follows: if e1, . . . , em be a basis of V and e1, . . . , e  ∗ isn ∗ ∗ ∗ ∗)−1the dual basis of V ∗ then dvdv = e1 ∧ e1 · · ·  ∧  en ∧ e . Let  dy = (dvdv be the corresponding n

supervolume element. 
Let A : V → V be a linear operator. Then we can define an even smooth function S on the odd 

∗ ∗space Y as follows: S(v, v ) =  (Av, v ). More explicitly, if ξi be coordinates on V corresponding to the 
∗basis ei, and  ηi the dual system of coordinates on V , then  

S(ξ1, . . . , ξm, η1, . . . , ηm) =  aij ξj ηi, 
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where (aij ) is  the  matrix  of  A in the basis ei. 

Proposition 9.8. 
S e dy = det  A 

Y 

Proof. We have S(v, v∗) =  1 B((v, v∗), (v, v∗)), where B is the skew form on ΠY , which is given by the 2 ∗ ∗ ∗ ∗formula B((v, v ), (w, w )) = (Av, w ) − (Aw, v ). It is easy to see that Pf(B) =  det(A), so Proposition 
9.8 follows from Proposition 9.7. 

Another proof can be obtained by direct evaluation of the top coefficient. � 

9.10. The Wick formula in the odd case. Let V be a 2m-dimensional odd space with a volume 
form dξ, and  B ∈ S2V a nondegenerate form (symmetric in the supersense and antisymmetric in the 
usual sense). Let λ1, . . . , λn be linear functions on V (regarded as the usual space). Then λ1, . . . , λn 

can be regarded as odd smooth functions on the superspace V . 

Theorem 9.9. � 
λ1(ξ) · · ·λn(ξ)e − 1 2 B(ξ,ξ)(dξ)−1 = Pf(−B)Pf(B−1(λi, λj )). 

V 

(By definition, this is zero if n is odd). In other words, we have: 

λ1(ξ) · · ·λn(ξ)e − 1 2 B(ξ,ξ)(dξ)−1 = Pf(−B) εσ (B−1(λi, λσ(i) )). 
V σ∈Πm i∈{1,...,2m},i<σ(i) 

Proof. We prove the second formula. Choose a basis ei of V with respect to which the form B is 
standard: B(ej , el) = 1  if  j = 2i − 1, l  = 2i, and  B(ej , el) = 0 for other pairs j <  l. Since  both  sides  

∗ ∗of the formula are polylinear with respect to λ1, . . . , λn, it suffices to check it if λ1 = ei1
, . . . , λn = ein 

. 
This is easily done by direct computation (in the sum on the right hand side, only one term may be 
nonzero). � 


