### 18.175: Lecture 9

## Borel-Cantelli and strong law

Scott Sheffield

MIT

## Outline

Laws of large numbers: Borel-Cantelli applications

Strong law of large numbers

## Outline

Laws of large numbers: Borel-Cantelli applications

## Strong law of large numbers

## Borel-Cantelli lemmas

- First Borel-Cantelli lemma: If $\sum_{n=1}^{\infty} P\left(A_{n}\right)<\infty$ then $P\left(A_{n}\right.$ i.o. $)=0$.
- Second Borel-Cantelli lemma: If $A_{n}$ are independent, then $\sum_{n=1}^{\infty} P\left(A_{n}\right)=\infty$ implies $P\left(A_{n}\right.$ i.o. $)=1$.


## Convergence in probability subsequential a.s. convergence

- Theorem: $X_{n} \rightarrow X$ in probability if and only if for every subsequence of the $X_{n}$ there is a further subsequence converging a.s. to $X$.
- Main idea of proof: Consider event $E_{n}$ that $X_{n}$ and $X$ differ by $\epsilon$. Do the $E_{n}$ occur i.o.? Use Borel-Cantelli.


## Pairwise independence example

- Theorem: Suppose $A_{1}, A_{2}, \ldots$ are pairwise independent and $\sum P\left(A_{n}\right)=\infty$, and write $S_{n}=\sum_{i=1}^{n} 1_{A_{i}}$. Then the ratio $S_{n} / E S_{n}$ tends a.s. to 1 .
- Main idea of proof: First, pairwise independence implies that variances add. Conclude (by checking term by term) that $\operatorname{Var} S_{n} \leq E S_{n}$. Then Chebyshev implies

$$
P\left(\left|S_{n}-E S_{n}\right|>\delta E S_{n}\right) \leq \operatorname{Var}\left(S_{n}\right) /\left(\delta E S_{n}\right)^{2} \rightarrow 0
$$

which gives us convergence in probability.

- Second, take a smart subsequence. Let $n_{k}=\inf \left\{n: E S_{n} \geq k^{2}\right\}$. Use Borel Cantelli to get a.s. convergence along this subsequence. Check that convergence along this subsequence deterministically implies the non-subsequential convergence.


## Outline

Laws of large numbers: Borel-Cantelli applications

Strong law of large numbers

## Outline

## Laws of large numbers: Borel-Cantelli applications

Strong law of large numbers

## General strong law of large numbers

- Theorem (strong law): If $X_{1}, X_{2}, \ldots$ are i.i.d. real-valued random variables with expectation $m$ and $A_{n}:=n^{-1} \sum_{i=1}^{n} X_{i}$ are the empirical means then $\lim _{n \rightarrow \infty} A_{n}=m$ almost surely.


## Proof of strong law assuming $E\left[X^{4}\right]<\infty$

- Assume $K:=E\left[X^{4}\right]<\infty$. Not necessary, but simplifies proof.
- Note: $\operatorname{Var}\left[X^{2}\right]=E\left[X^{4}\right]-E\left[X^{2}\right]^{2} \geq 0$, so $E\left[X^{2}\right]^{2} \leq K$.
- The strong law holds for i.i.d. copies of $X$ if and only if it holds for i.i.d. copies of $X-\mu$ where $\mu$ is a constant.
- So we may as well assume $E[X]=0$.
- Key to proof is to bound fourth moments of $A_{n}$.
- $E\left[A_{n}^{4}\right]=n^{-4} E\left[S_{n}^{4}\right]=n^{-4} E\left[\left(X_{1}+X_{2}+\ldots+X_{n}\right)^{4}\right]$.
- Expand $\left(X_{1}+\ldots+X_{n}\right)^{4}$. Five kinds of terms: $X_{i} X_{j} X_{k} X_{l}$ and $X_{i} X_{j} X_{k}^{2}$ and $X_{i} X_{j}^{3}$ and $X_{i}^{2} X_{j}^{2}$ and $X_{i}^{4}$.
- The first three terms all have expectation zero. There are $\binom{n}{2}$ of the fourth type and $n$ of the last type, each equal to at most $K$. So $E\left[A_{n}^{4}\right] \leq n^{-4}\left(6\binom{n}{2}+n\right) K$.
- Thus $E\left[\sum_{n=1}^{\infty} A_{n}^{4}\right]=\sum_{n=1}^{\infty} E\left[A_{n}^{4}\right]<\infty$. So $\sum_{n=1}^{\infty} A_{n}^{4}<\infty$ (and hence $A_{n} \rightarrow 0$ ) with probability 1 .


## General proof of strong law

- Suppose $X_{k}$ are i.i.d. with finite mean. Let $Y_{k}=X_{k} 1_{\left|X_{k}\right| \leq k}$. Write $T_{n}=Y_{1}+\ldots+Y_{n}$. Claim: $X_{k}=Y_{k}$ all but finitely often a.s. so suffices to show $T_{n} / n \rightarrow \mu$. (Borel Cantelli, expectation of positive r.v. is area between cdf and line $y=1$ )
- Claim: $\sum_{k=1}^{\infty} \operatorname{Var}\left(Y_{k}\right) / k^{2} \leq 4 E\left|X_{1}\right|<\infty$. How to prove it?
- Observe: $\operatorname{Var}\left(Y_{k}\right) \leq E\left(Y_{k}^{2}\right)=\int_{0}^{\infty} 2 y P\left(\left|Y_{k}\right|>y\right) d y \leq$ $\int_{0}^{k} 2 y P\left(\left|X_{1}\right|>y\right) d y$. Use Fubini (interchange sum/integral, since everything positive)

$$
\begin{gathered}
\sum_{k=1}^{\infty} E\left(Y_{k}^{2}\right) / k^{2} \leq \sum_{k=1}^{\infty} k^{-2} \int_{0}^{\infty} 1_{(y<k)} 2 y P\left(\left|X_{1}\right|>y\right) d y= \\
\int_{0}^{\infty}\left(\sum_{k=1}^{\infty} k^{-2} 1_{(y<k)}\right) 2 y P\left(\left|X_{1}\right|>y\right) d y
\end{gathered}
$$

Since $E\left|X_{1}\right|=\int_{0}^{\infty} P\left(\left|X_{1}\right|>y\right) d y$, complete proof of claim by showing that if $y \geq 0$ then $\underset{11}{2 y} \sum_{k>y} k^{-2} \leq 4$.

## General proof of strong law

- Claim: $\sum_{k=1}^{\infty} \operatorname{Var}\left(Y_{k}\right) / k^{2} \leq 4 E\left|X_{1}\right|<\infty$. How to use it?
- Consider subsequence $k(n)=\left[\alpha^{n}\right]$ for arbitrary $\alpha>1$. Using Chebyshev, if $\epsilon>0$ then

$$
\begin{aligned}
& \left.\sum_{n=1}^{\infty} P\left|T_{k(n)}-E T_{k(n)}\right|>\epsilon k(n)\right) \leq \epsilon^{-1} \sum_{n=1}^{\infty} \operatorname{Var}\left(T_{k(n)}\right) / k(n)^{2} \\
& =\epsilon^{-2} \sum_{n=1}^{\infty} k(n)^{-2} \sum_{m=1}^{k(n)} \operatorname{Var}\left(Y_{m}\right)=\epsilon^{-2} \sum_{m=1}^{\infty} \operatorname{Var}\left(Y_{m}\right) \sum_{n: k(n) \geq m} k(n)^{-2} .
\end{aligned}
$$

- Sum series:

$$
\sum_{n: \alpha^{n} \geq m}\left[\alpha^{n}\right]^{-2} \leq 4 \sum_{n: \alpha^{n} \geq m} \alpha^{-2 n} \leq 4\left(1-\alpha^{-2}\right)^{-1} m^{-2}
$$

- Combine computations (observe RHS below is finite):

$$
\sum_{n=1}^{\infty} P\left(\left|T_{k(n)}-E T_{k}(n)\right|>\epsilon k(n)\right) \leq 4\left(1-\alpha^{-2}\right)^{-1} \epsilon^{-2} \sum_{m=1}^{\infty} E\left(Y_{m}^{2}\right) m^{-2}
$$

- Since $\epsilon$ is arbitrary, get $\left(T_{k(n)}-E T_{k(n)}\right) / k(n) \rightarrow 0$ a.s.

MIT OpenCourseWare
http://ocw.mit.edu

### 18.175 Theory of Probability

Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms .

MIT OpenCourseWare
http://ocw.mit.edu

### 18.175 Theory of Probability

Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

