18.175: Lecture 36 Brownian motion

Scott Sheffield

MIT

Markov property, Blumenthal's 0-1 law

Markov property, Blumenthal's 0-1 law

- Brownian motion is real-valued process B_t , $t \ge 0$.
- Independent increments: If $t_0 < t_1 < t_2 \dots$ then $B(t_0), B(t_1 t_0), B(t_2 t_1), \dots$ are independent.
- ► Gaussian increments: If s, t ≥ 0 then B(s + t) B(s) is normal with variance t.
- **Continuity:** With probability one, $t \rightarrow B_t$ is continuous.
- Hmm... does this mean we need to use a σ-algebra in which the event "B_t is continuous" is a measurable?
- Suppose Ω is set of all functions of t, and we use smallest σ-field that makes each B_t a measurable random variable... does that fail?

- ▶ Translation invariance: is $B_{t_0+t} B_{t_0}$ a Brownian motion?
- Brownian scaling: fix c, then B_{ct} agrees in law with $c^{1/2}B_t$.
- ▶ Another characterization: *B* is jointly Gaussian, $EB_s = 0$, $EB_sB_t = s \land t$, and $t \to B_t$ a.s. continuous.

Defining Brownian motion

- Can define joint law of B_t values for any finite collection of values.
- Can observe consistency and extend to countable set by Kolmogorov. This gives us measure in σ-field F₀ generated by cylinder sets.
- But not enough to get a.s. continuity.
- Can define Brownian motion jointly on diadic rationals pretty easily. And claim that this a.s. extends to continuous path in unique way.
- Check out Kolmogorov continuity theorem.
- Can prove Hölder continuity using similar estimates (see problem set).
- Can extend to higher dimensions: make each coordinate independent Brownian motion.

Markov property, Blumenthal's 0-1 law

Markov property, Blumenthal's 0-1 law

- Write $\mathcal{F}_s^o = \sigma(B_r : r \leq s)$.
- Write $\mathcal{F}_s^+ = \cap_{t>s} \mathcal{F}_t^o$
- Note right continuity: $\cap_{t>s} \mathcal{F}_t^+ = \mathcal{F}_s^+$.
- \mathcal{F}_s^+ allows an "infinitesimal peek at future"

▶ If $s \ge 0$ and Y is bounded and C-measurable, then for all $x \in \mathbb{R}^d$, we have

$$E_{x}(Y \circ \theta_{s} | \mathcal{F}_{s}^{+}) = E_{B_{s}}Y,$$

where the RHS is function $\phi(x) = E_x Y$ evaluated at $x = B_s$.

- If A ∈ F₀⁺, then P(A) ∈ {0,1} (if P is probability law for Brownian motion started at fixed value x at time 0).
- There's nothing you can learn from infinitesimal neighborhood of future.

MIT OpenCourseWare http://ocw.mit.edu

18.175 Theory of Probability Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.