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Markov chains: general definition 

�	 Consider a measurable space (S , S). 
�	 A function p : S × S → R is a transition probability if 

�	 For each x ∈ S , A → p(x , A) is a probability measure on S , S). 
�	 For each A ∈ S , the map x → p(x , A) is a measurable function. 

�	 Say that Xn is a Markov chain w.r.t. Fn with transition 
probability p if P(Xn+1 ∈ B|Fn) = p(Xn, B). 

�	 How do we construct an infinite Markov chain? Choose p and 
initial distribution µ on (S , S). For each n < ∞ write   

P(Xj ∈ Bj , 0 ≤ j ≤ n) = µ(dx0) p(x0, dx1) · · ·
B0 B1  

p(xn−1, dxn). 
Bn 

Extend to n = ∞ by Kolmogorov’s extension theorem. 
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Markov chains 

Definition, again: Say Xn is a Markov chain w.r.t. Fn with 
transition probability p if P(Xn+1 ∈ B|Fn) = p(Xn, B). 

Construction, again: Fix initial distribution µ on (S , S). For 
each n < ∞ write 

P(Xj ∈ Bj , 0 ≤ j ≤ n) = µ(dx0) p(x0, dx1) · · · 
B0 B1 

p(xn−1, dxn). 
Bn 

Extend to n = ∞ by Kolmogorov’s extension theorem. 

Notation: Extension produces probability measure Pµ on 
, S0,1,...).sequence space (S0,1,...

Theorem: (X0, X1, . . .) chosen from Pµ is Markov chain. 

Theorem: If Xn is any Markov chain with initial distribution 
µ and transition p, then finite dim. probabilities are as above. 
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Markov properties 

  
S{0,1,...}, S{0,1,...}Markov property: Take (Ω0, F) = , and 

let Pµ be Markov chain measure and θn the shift operator on 
Ω0 (shifts sequence n units to left, discarding elements shifted 
off the edge). If Y : Ω0 → R is bounded and measurable then 

Eµ(Y ◦ θn|Fn) = EXn Y . 

Strong Markov property: Can replace n with a.s. finite 
stopping time N and function Y can vary with time. Suppose 
that for each n, Yn : Ωn → R is measurable and |Yn| ≤ M for 
all n. Then 

Eµ(YN ◦ θN |FN ) = EXN YN , 

where RHS means Ex Yn evaluated at x = Xn, n = N. 
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Properties 

Property of infinite opportunities: Suppose Xn is Markov 
chain and 

P(∪∞ 
m=n+1{Xm ∈ Bm}|Xn) ≥ δ > 0 

on {Xn ∈ An}. Then P({Xn ∈ An i .o.} − {Xn ∈ Bn i .o.}) = 0. 

Reflection principle: Symmetric random walks on R. Have 
P(sup > a) ≤ 2P(Sn > a).m≥n Sm 

Proof idea: Reflection picture. 
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Reversibility 

Measure µ called reversible if µ(x)p(x , y) = µ(y)p(y , x) for
 
all x , y .
 

Reversibility implies stationarity. Implies that amount of mass
 
moving from x to y is same as amount moving from y to x .
 
Net flow of zero along each edge.
 

Markov chain called reversible if admits a reversible probability
 
measure.
 

Are all random walks on (undirected) graphs reversible?
 

What about directed graphs?
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Cycle theorem 

Kolmogorov’s cycle theorem: Suppose p is irreducible. 
Then exists reversible measure if and only if 

p(x , y) > 0 implies p(y , x) > 0 nfor any loop x0, x1, . . . xn with i=1 p(xi , xi−1) > 0, we have 

n
p(xi−1, xi ) 

= 1. 
p(xi , xi−1)

i=1 

Useful idea to have in mind when constructing Markov chains 
with given reversible distribution, as needed in Monte Carlo 
Markov Chains (MCMC) applications. 
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Query 

Interesting question: If A is an infinite probability transition 
matrix on a countable state space, what does the (infinite) 
matrix I + A + A2 + A3 + . . . = (I − A)−1 represent (if the 
sum converges)? 

Question: Does it describe the expected number of y hits 
when starting at x? Is there a similar interpretation for other 
power series? 

A λA?How about e or e

Related to distribution after a Poisson random number of 
steps? 

18.175 Lecture 32 

12

I

I

I

I



�

�

Recurrence 

Consider probability walk from y ever returns to y .
 

If it’s 1, return to y infinitely often, else don’t. Call y a
 
recurrent state if we return to y infinitely often.
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