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Martingales 

�	 Let Fn be increasing sequence of σ-fields (called a filtration). 
�	 A sequence Xn is adapted to Fn if Xn ∈ Fn for all n. If Xn is 

an adapted sequence (with E |Xn| < ∞) then it is called a 
martingale if 

E (Xn+1|Fn) = Xn 

for all n. It’s a supermartingale (resp., submartingale) if 
same thing holds with = replaced by ≤ (resp., ≥). 

�	 Theorem: E (X |Fi ) is a martingale if Fi is an increasing 
sequence of σ-algebras and E (|X |) < ∞. 

�	 Optional stopping theorem: Under some conditions (what 
conditions?) the expectation of martingale at a stopping time 
is just the initial value of martingale. 

�	 Martingale convergence: A non-negative martingale almost 
surely has a limit. Under some conditions (what conditions?) 
the expectation of the limit is the initial value of the 
martingale. 
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Problems 

Classic brainteaser: 52 cards (half red, half black) shuffled
 
and face down. I turn them over one at a time. At some point
 
(before last card is turned over) you say “stop”. If subsequent
 
card is red, you get one dollar. You do you time your stop to
 
maximize your probability of winning?
 

Classic observation: if rn denotes fraction of face-down
 
cards that are red after n have been turned over, then rn is a
 
martingale.
 

Optional stopping theorem implies that it doesn’t matter
 
when you say stop. All strategies yield same expected payoff.
 

Odds of winning are same for monkey and genius.
 

Unless you cheat.
 

Classic question: Is this also true of the stock market?
 

18.175 Lecture 29 

3

I

I

I

I

I

I



�

�

�

�

�

�

�

�

�

�

�

�

Martingales as real-time subjective probability updates 

Ivan sees email from girlfriend with subject “some possibly 
serious news”, thinks there’s a 20 percent chance she’ll dump 
him by email’s end. Revises number after each line: 

Oh Ivan, I’ve missed you so much! 12 

But there’s something I have to tell you 23 

and please don’t take this the wrong way. 29 

I’ve been spending lots of time with a guy named Robert, 47 

a visiting database consultant on my project 34 

who seems very impressed by my work 23 

and wants me to join his startup in Palo Alto. 38 

Said I’d absolutely have to talk to you first, 19 

that you are my first priority in life. 7 

But I’m just so confused on so many levels. 15 

Please call me! I love you so much! Alice 0 
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Continuous martingales 

Cassandra is a rational person. She subjective probability
 
estimates in real time so fast that they can be viewed as
 
continuous martingales.
 

She uses the phrase “I think X ” in a precise way: it means
 
that P(X ) > 1/2.
 

Cassandra thinks she will win her tennis match today.
 
However, she thinks that she will at some point think she
 
won’t win. She does not think that she will ever think that
 
she won’t at some point think she will win.
 

What’s the probability that Cassandra will win? (Give the full
 
range of possibilities.)
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Theorems 

Lp convergence theorem: If Xn is martingale with 
sup E |Xn|p < ∞ where p > 1 then Xn → X a.s. and in Lp. 

Orthogonal increment theorem: Let Xn be a martingale 
with EX 2 < ∞ for all n. If m ≤ n and Y ∈ Fm withn n  
EY 2 < ∞, then E (Xn − Xm)Y = 0.
 

Cond. variance theorem: If Xn is martingale, EX 2 < ∞ for
 n  n 
all n, then E (Xn − Xm)

2|Fm = E (X 2|Fm) − X 2 .n m

“Accumulated variance” theorems: Consider martingale 
Xn with EX 2 < ∞ for all n. By Doob, can write n
 
X 2 = Mn + An where Mn is a martingale, and
 n 

n nn n n  
= E (X 2 |Fm−1)−X 2 = E (Xm−Xm−1)

2|Fm−1 .An m m−1
 
m=1 m=1
 

Then E (sup |Xm|2) ≤ 4EA∞. And limn→∞ Xn exists and is m 
finite a.s. on {A∞ < ∞}. 
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Uniform integrability 

Say Xi , i ∈ I , are uniform integrable if n 
lim sup E (|Xi |; |Xi | > M) = 0. 

M→∞ i∈I 

Example: Given (Ω, F0, P) and X ∈ L1, then a uniformly 
integral family is given by {E (X |F)} (where F ranges over all 
σ-algebras contained in F0). 
Theorem: If Xn → X in probability then the following are 
equivalent: 

� Xn are uniformly integrable 
� Xn → X in L1 

� E |Xn| → E |X | < ∞ 

Proof idea: They all amount to controlling “contribution to 
expectation from values near infinity”. 
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Submartingale convergence 

Submartingale convergence theorem: The following are 
equivalent for a submartingale: 

It’s uniformly integrable. 
It converges a.s. and in L1 . 
It converges in L1 . 

Proof idea: First implies second: uniform integrability implies 
sup E |Xn| < ∞, martingale convergence then implies Xn → X 
a.s., and previous result implies Xn → X in probability. Easier 
to see second implies third, third implies first. 
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Martingale convergence 

Martingale convergence theorem: The following are 
equivalent for a martingale: 

It’s uniformly integrable. 
It converges a.s. and in L1 . 
It converges in L1 . 
There is an integrable random variable X so that 
Xn = E (X |Fn). 
In other words, every uniformly integrable martingale can be 
interpreted as a “revised expectation given latest information” 
sequence. 
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Backwards martingales 

Suppose E (Xn+1|Fn) = X with n ≤ 0 (and Fn increasing as n 
increases).
 

Kind of like conditional expectation given less and less an
 
information (as n → −∞)
 

Theorem: X−∞ = limn→−∞ Xn exists a.s. and in L1 .
 

Proof idea: Use upcrosing inequality to show expected
 
number of upcrossings of any interval is finite. Since
 
Xn = E (X0|Fn) the Xn are uniformly integrable, and we can
 
deduce convergence in L1 .
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General optional stopping theorem 

Let Xn be a uniformly integrable submartingale. 

Theorem: For any stopping time N, XN∧n is uniformly 
integrable. 

Theorem: If E |Xn| < ∞ and Xn1(N>n) is uniformly 
integrable, then XN∧n is uniformly integrable. 

Theorem: For any stopping time N ≤ ∞, we have 
EX0 ≤ EXN ≤ EX∞ where X∞ = lim Xn. 

Fairly general form of optional stopping theorem: If 
L ≤ M are stopping times and YM∧n is a uniformly integrable 
submartingale, then EYL ≤ EYM and YL ≤ E (YM |FL). 
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