18.175: Lecture 23 Random walks

Scott Sheffield

MIT

Stopping times

Stopping times

Arcsin law, other SRW stories

- Start with measure space (S, S, μ). Let Ω = {(ω₁, ω₂, ...) : ω_i ∈ S}, let F be product σ-algebra and P the product probability measure.
- ► Finite permutation of N is one-to-one map from N to itself that fixes all but finitely many points.
- ► Event A ∈ F is permutable if it is invariant under any finite permutation of the ω_i.
- Let \mathcal{E} be the σ -field of permutable events.
- This is related to the tail σ-algebra we introduced earlier in the course. Bigger or smaller?

- ▶ If X_1, X_2, \ldots are i.i.d. and $A \in \mathcal{A}$ then $P(A) \in \{0, 1\}$.
- Idea of proof: Try to show A is independent of itself, i.e., that P(A) = P(A ∩ A) = P(A)P(A). Start with measure theoretic fact that we can approximate A by a set A_n in σ-algebra generated by X₁,...X_n, so that symmetric difference of A and A_n has very small probability. Note that A_n is independent of event A'_n that A_n holds when X₁,...,X_n and X_{n1},...,X_{2n} are swapped. Symmetric difference between A and A'_n is also small, so A is independent of itself up to this small error. Then make error arbitrarily small.

- If X_i are i.i.d. in \mathbb{R}^n then $S_n = \sum_{i=1}^n X_i$ is a **random walk** on \mathbb{R}^n .
- ▶ **Theorem:** if *S_n* is a random walk on ℝ then one of the following occurs with probability one:
 - $S_n = 0$ for all n
 - $S_n \to \infty$

•
$$S_n \to -\infty$$

- $-\infty = \liminf S_n < \limsup S_n = \infty$
- Idea of proof: Hewitt-Savage implies the lim sup S_n and lim inf S_n are almost sure constants in [-∞,∞]. Note that if X₁ is not a.s. constant, then both values would depend on X₁ if they were not in ±∞

Stopping times

Arcsin law, other SRW stories

Stopping times

Arcsin law, other SRW stories

- Say that T is a **stopping time** if the event that T = n is in \mathcal{F}_n for $i \leq n$.
- In finance applications, T might be the time one sells a stock. Then this states that the decision to sell at time n depends only on prices up to time n, not on (as yet unknown) future prices.

- ▶ Let $A_1,...$ be i.i.d. random variables equal to -1 with probability .5 and 1 with probability .5 and let $X_0 = 0$ and $X_n = \sum_{i=1}^n A_i$ for $n \ge 0$.
- Which of the following is a stopping time?
 - 1. The smallest T for which $|X_T| = 50$
 - 2. The smallest T for which $X_T \in \{-10, 100\}$
 - 3. The smallest T for which $X_T = 0$.
 - 4. The T at which the X_n sequence achieves the value 17 for the 9th time.
 - 5. The value of $T \in \{0, 1, 2, \dots, 100\}$ for which X_T is largest.
 - 6. The largest $T \in \{0, 1, 2, ..., 100\}$ for which $X_T = 0$.

Answer: first four, not last two.

- ▶ **Theorem:** Let $X_1, X_2, ...$ be i.i.d. and N a stopping time with $N < \infty$.
- Conditioned on stopping time N < ∞, conditional law of {X_{N+n}, n ≥ 1} is independent of *F_n* and has same law as original sequence.
- ► Wald's equation: Let X_i be i.i.d. with E|X_i| < ∞. If N is a stopping time with EN < ∞ then ES_N = EX₁EN.
- ▶ Wald's second equation: Let X_i be i.i.d. with $E|X_i| = 0$ and $EX_i^2 = \sigma^2 < \infty$. If N is a stopping time with $EN < \infty$ then $ES_N = \sigma^2 EN$.

- S₀ = a ∈ Z and at each time step S_j independently changes by ±1 according to a fair coin toss. Fix A ∈ Z and let N = inf{k : S_k ∈ {0, A}. What is ES_N?
- ► What is EN?

Stopping times

Arcsin law, other SRW stories

Stopping times

- How many walks from (0, x) to (n, y) that don't cross the horizontal axis?
- ► Try counting walks that *do* cross by giving bijection to walks from (0, -x) to (n, y).

- Suppose that in election candidate A gets α votes and B gets β < α votes. What's probability that A is a head throughout the counting?
- Answer: (α − β)/(α + β). Can be proved using reflection principle.

- Theorem for last hitting time.
- Theorem for amount of positive positive time.

18.175: Lecture 23 Random walks

Scott Sheffield

MIT

Stopping times

Stopping times

Arcsin law, other SRW stories

- Start with measure space (S, S, μ). Let Ω = {(ω₁, ω₂, ...) : ω_i ∈ S}, let F be product σ-algebra and P the product probability measure.
- ► Finite permutation of N is one-to-one map from N to itself that fixes all but finitely many points.
- ► Event A ∈ F is permutable if it is invariant under any finite permutation of the ω_i.
- Let \mathcal{E} be the σ -field of permutable events.
- This is related to the tail σ-algebra we introduced earlier in the course. Bigger or smaller?

- ▶ If X_1, X_2, \ldots are i.i.d. and $A \in \mathcal{A}$ then $P(A) \in \{0, 1\}$.
- Idea of proof: Try to show A is independent of itself, i.e., that P(A) = P(A ∩ A) = P(A)P(A). Start with measure theoretic fact that we can approximate A by a set A_n in σ-algebra generated by X₁,...X_n, so that symmetric difference of A and A_n has very small probability. Note that A_n is independent of event A'_n that A_n holds when X₁,...,X_n and X_{n1},...,X_{2n} are swapped. Symmetric difference between A and A'_n is also small, so A is independent of itself up to this small error. Then make error arbitrarily small.

- If X_i are i.i.d. in \mathbb{R}^n then $S_n = \sum_{i=1}^n X_i$ is a **random walk** on \mathbb{R}^n .
- ▶ **Theorem:** if *S_n* is a random walk on ℝ then one of the following occurs with probability one:
 - $S_n = 0$ for all n
 - $S_n \to \infty$

•
$$S_n \to -\infty$$

- $-\infty = \liminf S_n < \limsup S_n = \infty$
- Idea of proof: Hewitt-Savage implies the lim sup S_n and lim inf S_n are almost sure constants in [-∞,∞]. Note that if X₁ is not a.s. constant, then both values would depend on X₁ if they were not in ±∞

Stopping times

Arcsin law, other SRW stories

Stopping times

Arcsin law, other SRW stories

- Say that T is a **stopping time** if the event that T = n is in \mathcal{F}_n for $i \leq n$.
- In finance applications, T might be the time one sells a stock. Then this states that the decision to sell at time n depends only on prices up to time n, not on (as yet unknown) future prices.

- ▶ Let $A_1,...$ be i.i.d. random variables equal to -1 with probability .5 and 1 with probability .5 and let $X_0 = 0$ and $X_n = \sum_{i=1}^n A_i$ for $n \ge 0$.
- Which of the following is a stopping time?
 - 1. The smallest T for which $|X_T| = 50$
 - 2. The smallest T for which $X_T \in \{-10, 100\}$
 - 3. The smallest T for which $X_T = 0$.
 - 4. The T at which the X_n sequence achieves the value 17 for the 9th time.
 - 5. The value of $T \in \{0, 1, 2, \dots, 100\}$ for which X_T is largest.
 - 6. The largest $T \in \{0, 1, 2, ..., 100\}$ for which $X_T = 0$.

Answer: first four, not last two.

- ▶ **Theorem:** Let $X_1, X_2, ...$ be i.i.d. and N a stopping time with $N < \infty$.
- Conditioned on stopping time N < ∞, conditional law of {X_{N+n}, n ≥ 1} is independent of *F_n* and has same law as original sequence.
- ► Wald's equation: Let X_i be i.i.d. with E|X_i| < ∞. If N is a stopping time with EN < ∞ then ES_N = EX₁EN.
- ▶ Wald's second equation: Let X_i be i.i.d. with $E|X_i| = 0$ and $EX_i^2 = \sigma^2 < \infty$. If N is a stopping time with $EN < \infty$ then $ES_N = \sigma^2 EN$.

- S₀ = a ∈ Z and at each time step S_j independently changes by ±1 according to a fair coin toss. Fix A ∈ Z and let N = inf{k : S_k ∈ {0, A}. What is ES_N?
- ► What is EN?

Stopping times

Stopping times

- How many walks from (0, x) to (n, y) that don't cross the horizontal axis?
- ► Try counting walks that *do* cross by giving bijection to walks from (0, -x) to (n, y).

- Suppose that in election candidate A gets α votes and B gets β < α votes. What's probability that A is a head throughout the counting?
- Answer: (α − β)/(α + β). Can be proved using reflection principle.

- Theorem for last hitting time.
- Theorem for amount of positive positive time.

MIT OpenCourseWare http://ocw.mit.edu

18.175 Theory of Probability Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.