18.175: Lecture 13 More large deviations

Scott Sheffield

MIT

Legendre transform

Large deviations

2

Legendre transform

Legendre transform

▶ Define **Legendre transform** (or Legendre dual) of a function $\Lambda : \mathbb{R}^d \to \mathbb{R}$ by

$$\Lambda^*(x) = \sup_{\lambda \in \mathbb{R}^d} \{ (\lambda, x) - \Lambda(\lambda) \}.$$

- Let's describe the Legendre dual geometrically if d=1: $\Lambda^*(x)$ is where tangent line to Λ of slope x intersects the real axis. We can "roll" this tangent line around the convex hull of the graph of Λ , to get all Λ^* values.
- Is the Legendre dual always convex?
- ▶ What is the Legendre dual of x^2 ? Of the function equal to 0 at 0 and ∞ everywhere else?
- ▶ How are derivatives of Λ and Λ * related?
- What is the Legendre dual of the Legendre dual of a convex function?
- What's the higher dimensional analog of rolling the tangent line?

Legendre transform

Legendre transform

Recall: moment generating functions

- ▶ Let X be a random variable.
- ► The **moment generating function** of X is defined by $M(t) = M_X(t) := E[e^{tX}].$
- When X is discrete, can write $M(t) = \sum_{x} e^{tx} p_X(x)$. So M(t) is a weighted average of countably many exponential functions.
- ▶ When X is continuous, can write $M(t) = \int_{-\infty}^{\infty} e^{tx} f(x) dx$. So M(t) is a weighted average of a continuum of exponential functions.
- We always have M(0) = 1.
- ▶ If b > 0 and t > 0 then $E[e^{tX}] \ge E[e^{t \min\{X,b\}}] \ge P\{X \ge b\}e^{tb}.$
- ▶ If X takes both positive and negative values with positive probability then M(t) grows at least exponentially fast in |t| as $|t| \to \infty$.

7

18.175 Lecture 13

Recall: moment generating functions for i.i.d. sums

- ▶ We showed that if Z = X + Y and X and Y are independent, then $M_Z(t) = M_X(t)M_Y(t)$
- ▶ If $X_1 ... X_n$ are i.i.d. copies of X and $Z = X_1 + ... + X_n$ then what is M_Z ?
- Answer: M_X^n .

- ▶ Consider i.i.d. random variables X_i . Can we show that $P(S_n \ge na) \to 0$ exponentially fast when $a > E[X_i]$?
- ▶ Kind of a quantitative form of the weak law of large numbers. The empirical average A_n is *very* unlikely to ϵ away from its expected value (where "very" means with probability less than some exponentially decaying function of n).

General large deviation principle

- More general framework: a *large deviation principle* describes limiting behavior as $n \to \infty$ of family $\{\mu_n\}$ of measures on measure space $(\mathcal{X}, \mathcal{B})$ in terms of a *rate function I*.
- ▶ The **rate function** is a lower-semicontinuous map $I: \mathcal{X} \to [0, \infty]$. (The sets $\{x: I(x) \le a\}$ are closed rate function called "good" if these sets are compact.)
- ▶ **DEFINITION:** $\{\mu_n\}$ satisfy LDP with rate function I and speed n if for all $\Gamma \in \mathcal{B}$,

$$-\inf_{x\in\Gamma^0}I(x)\leq \liminf_{n\to\infty}\frac{1}{n}\log\mu_n(\Gamma)\leq \limsup_{n\to\infty}\frac{1}{n}\log\mu_n(\Gamma)\leq -\inf_{x\in\overline{\Gamma}}I(x).$$

- ▶ **INTUITION:** when "near x" the probability density function for μ_n is tending to zero like $e^{-I(x)n}$, as $n \to \infty$.
- ▶ **Simple case:** I is continuous, Γ is closure of its interior.
- ▶ **Question:** How would *I* change if we replaced the measures μ_n by weighted measures $e^{(\lambda n, \cdot)}\mu_n$?
- ▶ Replace I(x) by $I(x) (\lambda, x)$? What is $\inf_x I(x) (\lambda, x)$?

Cramer's theorem

- Let μ_n be law of empirical mean $A_n = \frac{1}{n} \sum_{j=1}^n X_j$ for i.i.d. vectors X_1, X_2, \dots, X_n in \mathbb{R}^d with same law as X.
- ▶ Define **log moment generating function** of *X* by

$$\Lambda(\lambda) = \Lambda_X(\lambda) = \log M_X(\lambda) = \log \mathbb{E}e^{(\lambda,X)},$$

where (\cdot, \cdot) is inner product on \mathbb{R}^d .

Define Legendre transform of Λ by

$$\Lambda^*(x) = \sup_{\lambda \in \mathbb{R}^d} \{(\lambda, x) - \Lambda(\lambda)\}.$$

▶ **CRAMER'S THEOREM:** μ_n satisfy LDP with convex rate function Λ^* .

11

Thinking about Cramer's theorem

- Let μ_n be law of empirical mean $A_n = \frac{1}{n} \sum_{j=1}^n X_j$.
- ▶ **CRAMER'S THEOREM:** μ_n satisfy LDP with convex rate function

$$I(x) = \Lambda^*(x) = \sup_{\lambda \in \mathbb{R}^d} \{(\lambda, x) - \Lambda(\lambda)\},$$

where $\Lambda(\lambda) = \log M(\lambda) = \mathbb{E}e^{(\lambda, X_1)}$.

▶ This means that for all $\Gamma \in \mathcal{B}$ we have this **asymptotic lower** bound on probabilities $\mu_n(\Gamma)$

$$-\inf_{x\in\Gamma^0}I(x)\leq \liminf_{n\to\infty}\frac{1}{n}\log\mu_n(\Gamma),$$

so (up to sub-exponential error) $\mu_n(\Gamma) \geq e^{-n\inf_{x \in \Gamma^0} I(x)}$.

▶ and this **asymptotic upper bound** on the probabilities $\mu_n(\Gamma)$

$$\limsup_{n\to\infty}\frac{1}{n}\log\mu_n(\Gamma)\leq -\inf_{x\in\overline{\Gamma}}I(x),$$

which says (up to subexponential error) $\mu_n(\Gamma) \leq e^{-n \inf_{x \in \Gamma} I(x)}$.

Proving Cramer upper bound

- ▶ Recall that $I(x) = \Lambda^*(x) = \sup_{\lambda \in \mathbb{R}^d} \{(\lambda, x) \Lambda(\lambda)\}.$
- \triangleright For simplicity, assume that Λ is defined for all x (which implies that X has moments of all orders and Λ and Λ^* are strictly convex, and the derivatives of Λ and Λ' are inverses of each other). It is also enough to consider the case X has mean zero, which implies that $\Lambda(0) = 0$ is a minimum of Λ , and $\Lambda^*(0) = 0$ is a minimum of Λ^* .
- We aim to show (up to subexponential error) that $\mu_n(\Gamma) < e^{-n\inf_{x \in \overline{\Gamma}} I(x)}$.
- ▶ If Γ were singleton set $\{x\}$ we could find the λ corresponding to x, so $\Lambda^*(x) = (x, \lambda) - \Lambda(\lambda)$. Note then that

$$\mathbb{E}e^{(n\lambda,A_n)}=\mathbb{E}e^{(\lambda,S_n)}=M_X^n(\lambda)=e^{n\Lambda(\lambda)},$$

and also $\mathbb{E}e^{(n\lambda,A_n)} > e^{n(\lambda,x)}\mu_n\{x\}$. Taking logs and dividing by n gives $\Lambda(\lambda) \geq \frac{1}{n} \log \mu_n + (\lambda, x)$, so that $\frac{1}{n}\log \mu_n(\Gamma) \leq -\Lambda^*(x)$, as desired.

General Γ: cut into finitely many pieces, bound each piece?

Proving Cramer lower bound

- ▶ Recall that $I(x) = \Lambda^*(x) = \sup_{\lambda \in \mathbb{R}^d} \{(\lambda, x) \Lambda(\lambda)\}.$
- ▶ We aim to show that asymptotically $\mu_n(\Gamma) \ge e^{-n\inf_{x \in \Gamma^0} I(x)}$.
- ▶ It's enough to show that for each given $x \in \Gamma^0$, we have that asymptotically $\mu_n(\Gamma) \ge e^{-n\inf_{x \in \Gamma^0} I(x)}$.
- ▶ Idea is to weight the law of X by $e^{(\lambda,x)}$ for some λ and normalize to get a new measure whose expectation is this point x. In this new measure, A_n is "typically" in Γ for large Γ , so the probability is of order 1.
- ▶ But by how much did we have to modify the measure to make this typical? Not more than by factor $e^{-n\inf_{x\in\Gamma^0}I(x)}$.

MIT OpenCourseWare http://ocw.mit.edu

18.175 Theory of Probability

Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.