
Course Description for Real Analysis, Math 156

In this class, we will study elliptic PDE, Fourier analysis, and dispersive PDE.
Here is a quick summary of the topics we will study. They’re described in more 

detail below. We will study variable-coefficient elliptic PDE, looking at regularity es-
timates like the Schauder inequality and the De Georgi-Nash-Moser inequality. We 
will use these estimates to solve elliptic PDE, starting with linear PDE and then 
turning to non-linear PDE. We will study applications of Fourier analysis, including a 
little combinatorics/number theory as well as applications to PDE. We will use 
Fourier   and harmonic analysis to prove Lp estimates for operators such as the 
Calderon-Zygmund inequality for the Laplacian. In dispersive PDE, we will study 
the Schrodinger equation. We again look at estimates, and build up to the Strichartz 
inequality. We will use the Strichartz inequality to study solutions of non-linear dis-
persive PDE.

We will also practice different strategies for proving estimates. For instance, when 
is it a good idea to break a sum into pieces, and which pieces should we use? When 
is it good to use Holder’s inequality? When do we need to exploit cancellation, and 
how do we prove that cancellation happens? When we look at a complex expression, 
how do we decide which terms are important and which are less important?

If you haven’t taken Math 155, here are the prerequisites you should have to take 
the course. You should  know about Lp spaces, and a little bit about Sobolev spaces. 
You should be familiar with the Fourier transform, with the Fourier inversion theorem 
and the Plancherel theorem.

Here is a more detailed description of the topics of the class.

Elliptic PDE

We will study variable-coefficient elliptic PDE and non-linear elliptic PDE. These
PDE generalize the Laplace equation 4u = 0 defining harmonic functions. Many
important properties of harmonic functions hold in much wider generality, and this
is our main topic. Let’s recall two important properties of harmonic functions. Let
Br ⊂ Rn denote the ball of radius r around the origin.

Theorem 1. (Regularity) If u : B1 → R is a harmonic function, then for any k ≥ 1,

‖u‖Ck(B 0
1/2)
≤ Ck,n‖u‖C (B1).

Theorem 2. (Solution to the Dirichlet problem) If g : ∂B1 → R is a smooth function,
¯then there is a unique function u : B1 → R satisfying

• 4u = 0.
• u restricted to ∂B1 is equal to g.
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A variable coefficient elliptic operator is an operator L of the form

n

Lu(x) :=
∑

aij(x)∂i∂ju(x), (1)
i,j=1

where aij(x) is a positive definite symmetric matrix depending on x. If aij is constant
in x, then after a change of variables, the operator L becomes the Laplacian 4. But
for variable aij(x), we get a much wider class of operators. These operators play a
big role in the PDE of differential geometry.

There are two main approaches to study variable coefficient operators. The per-
turbative approach studies Lu as a small variation of the Laplacian. This works if
we know some regularity of the coefficients a α

ij, for example if aij is Holder C for
some α > 0. In that case, on small balls, aij is almost constant, and we can think
of Lu as a small modification of the Laplacian. With this philosophy, Schauder was
able to prove the following regularity estimate.

Theorem 3. (Schauder regularity estimate) Suppose that L is as above, with aij ∈
Cα, and the eigenvalues of aij are pinched in the range 0 < λ ≤ aij ≤ Λ. Then there
is a constant C so that, for any solution Lu = 0 defined on B1,

‖u‖C2,α(B1/2) ≤ C‖u‖C0(B1).

If we have no estimate on the regularity of aij, then L does not resemble the
Laplacian in any real sense, and we cannot study it as a small perturbation of 4.
But even in this dramatically more general setting, some regularity estimate still
holds. Such regularity was first established by De Georgi-Nash-Moser. Their theorem
applies to operators written in a slightly different way, called divergence form:

n

Lu :=
∑

∂i(aij∂ju). (2).
i,j=1

Theorem 4. (De Georgi-Nash-Moser) Suppose that L is as defined by equation (2).
Suppose that the eigenvalues of aij are pinched in the range 0 < λ ≤ aij ≤ Λ. Then
there are constants C, α > 0 depending only on λ,Λ, n so that the following holds.
For any solution Lu = 0 defined on B1,

‖u‖Cα(B 0
1/2) ≤ C‖u‖C (B1).

Next we will discuss solving elliptic PDE, proving generalizations of Theorem 2
above. In Theorem 2, the solution u is given by a formula. But for other operators,
there is no way to find a formula for the solution. A major topic of analysis is how
to prove that there are solutions to an equation without being able to describe them
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by a closed formula. All different approaches to the problem involve estimates like
the ones we’ve been talking about. We will try to explain why estimates help to
find solutions of a PDE. Basically, since there is no closed formula for the solution,
we would like to find a procedure that approximates the solution more and more
accurately, and prove that the approximations converge to the solution. To prove
that the approximations converge and/or to prove that the approximations nearly
solve the equation are both problems about estimates, and these estimates turn out
to be closely connected to the estimates above.

In particular we will focus on the method of continuity. In this method, we consider
a 1-parameter family of problems, depending on a parameter t ∈ [0, 1]. We arrange
that when t = 0, the problem is one that we already understand, like the Laplace
equation on the ball, and at t = 1, the problem is the problem of interest. As t
changes from 0 to 1, we need to prove that there is a unique solution at each t. One
of the main worries is that the solution at time t may become wilder and wilder as
t→ t0 < 1, and there may be no solution for t ≥ t0. This scenario can be ruled out
if we can prove appropriate regularity estimates. Using this strategy we will solve
the Dirichlet problem for Lu = 0 and also for some non-linear PDE.

The minimal surface equation is an interesting non-linear elliptic PDE. Solutions
of the minimal surface equation model soap films. They play an important role in
differential geometry. We will study the minimal surface equation, proving regularity
estimates and discussing the Dirichlet problem.

Applications of Fourier analysis

The Fourier transform is a remarkably versatile tool, with applications in number
theory, combinatorics, geometry, and PDE. We will study some applications with an
eye towards learning to use the Fourier transform as a tool.

The Fourier transform allows us to take an almost arbitrary function f : Rn → C
(with some mild conditions on the growth of f) and write it as a linear combination
of waves eiωx at different frequencies ω. Given a problem about a function f , we can
study the problem using this decomposition. When is it useful to do this? Why is it
useful to do this?

The functions eiωx are eigenfunctions of all the partial derivative operators ∂j.
More generally, they are eigenfunctions for translation operators. For any v ∈ Rn,
define the operator Tv by Tvf(x) := f(x+v). Then we see that T (eiωx) = eiωvv (eiωx).
Decomposing f into these eigenfunctions can be a good way to study f in a problem
involving derivatives or translations or translational symmetry.

Here is a (perhaps surprising) example. The Gauss circle problem studies the
number of integer points in the disk of radius R in R2. Let N(R) denote this
number. A reasonable first guess is that N(R) is close to the area of the circle
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πR2. Let E(R) = N(R)− πR2 be the error in this guess. The Gauss circle problem
asks, how large is E(R)? Informed conjecture and computer simulation suggest
that E(R) ≤ CεR

(1/2)+ε for any ε > 0 - this is a deep open problem of number
theory. There is an elementary geometry argument showing that E(R) ≤ 10R. This
estimate was improved by Sierpinski to E(R) ≤ CR2/3 using Fourier analysis. Why
does it have anything to do with Fourier analysis? The problem involves the lattice
of integers Z2. If we perturb the set of lattice points by shifting them each a small
amount in an arbitrary direction, then the error term could be as large as ∼ R. The
Gauss circle problem depends delicately on the integers being exactly where they
are. How can we use this structure? What properties of the integer lattice can we
bring to bear on this estimate? Sierpinski’s argument is based on the fact that the
integer lattice is invariant under many translations, and this translational symmetry
brings Fourier analysis into the game.

Fourier analysis specializes in proving estimates based on symmetry. Often these
estimates involve cancellation. Suppose we want to estimate a sum of many terms,
with positive and negative contributions. This can be a delicate problem. For an
instance,∑ the Gauss circle problem can be easily rewritten as an estimate for a sum

i ai of R terms,∑where each ai has norm at most 1. The triangle inequality im-
mediately
|
∑ gives ai R, but we are hoping to prove a better estimate like
a | . R2/3

| | ≤
i or even R(1/2)+ε. If we estimate the total positive contribution up

to a factor of 1.001, and we estimate the total negative contribution up to a factor
1.001, it will still be hard to tell how close they are to canceling. Trying to estimate
each contribution even more accurately is very difficult. When we are able to prove
cancellation, it’s usually because there is some symmetry that causes the positive
terms to (almost) balance the negative terms. Fourier analysis is an important tool
for carrying out this type of estimate by symmetry.

Besides estimates in combinatorics/number theory like the Gauss circle problem,
we will mainly focus on Lp estimates for operators, especially operators appearing in
PDE. For example, we will prove the Calderon-Zygmund estimate for the Laplacian,
which also plays an important role in elliptic regularity.

Theorem 5. (Calderon-Zygmund) If 1 < p < ∞, and if u is a smooth compactly
supported function u : Rn → R, then

‖∂i∂ju‖Lp ≤ C(p, n)‖4u‖Lp .

A crucial tool in estimating Lp norms of operators is interpolation. Here is a
special case:

Theorem 6. (Special case of interpolation) Suppose that 1 ≤ p < q ≤ ∞. Suppose
that T is a linear operator that obeys
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• ‖Tf‖p ≤ C1‖f‖p and
• ‖Tf‖q ≤ C2‖f‖q.

Then for any r in the range p < r < q, there is a constant Cr so that

‖Tf‖r ≤ Cr‖f‖r.
We will prove the Marcinkiewicz interpolation theorem, which is more general than

this special case in several ways. In general, interpolation allows us to deduce new
Lp estimates from old Lp estimates. It is a fundamental tool in understanding the
Lp estimates obeyed by an operator.

We’ll also discuss why we want to prove Lp estimates about operators. Given a
linear operator T , it’s interesting to find all the pairs (p, q) so that ‖Tf‖p ≤ C‖f‖q
for some finite C. What kind of information about T does this list of pairs (p, q)
encode? We’ll talk about this in the course, and we’ll also address it a little bit more
in the next section on dispersive PDE.

Dispersive PDE

The wave equation and the Schrodinger equation are key examples of dispersive
equations. They are important in physics: the wave equation models sound waves,
and to some extent light waves. Other kinds of waves, like water waves, are more
complex, but understanding the wave equation is still an important tool for ap-
proaching these problems. The Schrodinger equation models a quantum mechanical
particle.

The equations apply to a function u that depends on a space variable x in Rn and
a time variable t ∈ R. (The case n = 3 is particularly interesting for physics, but all
dimensions n can be interesting mathematically.) They enjoy important conservation
laws like the conservation of energy for the wave equation. The Schrodinger equation
has a particularly∫simple conservation law: if u(x, t) solves the Schrodinger equation,
then the integral 3 |u(t, x)|2dx is independent of t. The conservation of energy forR
the wave equation is similar with a more complex formula involving derivatives of u.

The function |u(t, x)|2 is called the mass density for the Schrodinger equation. The
total mass is conserved, but the way that the mass density is arranged changes over
time. The Schrodinger equation is called dispersive because the mass density tends
to disperse over time. At a single time, say t = 0, the mass may be concentrated
into an arbitrarily small region, but it cannot stay concentrated over a substantial
time interval. Over a large time interval, the mass is forced to spread out. This
phenomenon can be described precisely using Lp norms. The L2 norm ‖u(•, t)‖L2

x
is

independent of time, and let’s suppose as as example that this norm is 1. Now for
p > 2, if the mass is very concentrated at time t, then ‖u(•, t)‖ pLx will be much larger
than 1. Vice versa, if ‖u(•, t)‖ pLx is small, then the mass must be spread out. So the
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dispersion can be described by a space-time estimate on ‖u‖Lp(Rn×R). If we have a
bound on ‖u‖Lp(Rn R), then at most times t, we have a bound on× ‖u(•, t)‖ pLx , and we
see that at most times the mass is dispersed.

The Strichartz estimate is a space-time Lp estimate for solutions of the Schrodinger
equation.

Theorem 7. (Strichartz) Suppose that u(x, t) is a solution of the Schrodinger equa-

tion on Rd × R. Then for p = 2(n+2) ,
n

‖u‖Lp(Rn R) ≤ C u× n‖ (•, 0)‖L2
x
.

This important result gives a lot of information about the way that solutions to the

Schrodinger equation disperse. The exponent p = 2(n+2) is the unique exponent that
n

makes this inequality hold. We will prove the Strichartz estimate using the tools
from Fourier and harmonic analysis that we studied earlier.

Finally, we will study some simple non-linear dispersive PDE’s. The existence of
solutions for the non-linear PDE depends on proving estimates. Estimates for the
linear PDE, such as the Strichartz inequality, are a crucial building block to prove
estimates about non-linear PDE.
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