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Today, we’re continuing our discussion of Sobolev inequalities from last lecture. Recall that last
time, we proved the following theorem:

Theorem 1. If u ∈ C1 n
c (R ), then

‖u‖ n
Ln−1

≤ ‖∇u‖L1 .

The idea of this proof was that we wrote

ˆ
1

|
n

u| − dx · · · dx
ˆ

1

≤ un 11 1 n
−

1 · · ·un−1n n dx1 · · · dxn

where ui =
´
|∂iu(x1, . . . , xn)| dxi and used the Holder inequality and Fubini’s theorem a lot of

times. Even though this started out seeming a bit daunting, we realized that it wasn’t that bad
because there were a lot of paths through this mess of Holder/Fubini that led us to the right
outcome. Related to what we did is the following theorem.

Theorem 2 (Gen. Loomis-Whitney). If uj : Rn → R is a function of x1, . . . , x̂i, . . . , xn where
uj ≥ 0, then ˆ ∏n n 1

1 n

un−1

j ≤
∏(ˆ

−1

uj

)
.

j=1 j=1

As a sharp example of this theorem, consider

uj =
∏

wi(xi),
i=j

where wi only depends on xi and wi ≥ 0. Now, the left hand side of gen. Loomis-Whitney gives us

ˆ
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wj(xj) =
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and the right hand side gives us
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We can use this sharp example as guidance when we’re trying to figure out how to use Holder to
give us our Sobolev bounds. For example, let us consider the n = 4 case of the above Sobolev
inequality. We want to know if splitting upˆ (ˆ

1/3 1/3
u1 u2 · 1/3 1/3

u3 u4 dx1 dx2

)
dx3 dx4

is a good idea. So let us plug in the ui from our sharp example to getˆ (ˆ
1/3 1/3

w 1
2 w1 · (w1w2)

/3(w1w2)
1/3 dx1 dx2

)
w?
3w

?
4 dx3 dx4,

where the question marks are some constants. And if we let g = w1w2,

ˆ
g1/3g2/3 ≤

(ˆ
g

)1/3(ˆ
g

)2/3

by Holder’s inequality, where we chose the exponents to make this example work out. The idea
now is that if at every step of our Holder/Fubini process, we choose exponenets to respect this
example, we will probably be fine.

Question: What if we look at ‖∇u‖Lq instead of ‖∇u‖L1 and ask for a similar Sobolev inequality
as before?

Recall that we had this issue with scaling. That is, if a Sobolev inequality held, then the exponents
should hold up to scaling. Let η ∈ Cc∞ and ηλ(x) = η(x/λ). Then,

‖ηλ‖ s0(p,n) s1(q,n)
Lp( n) = λ ‖η‖Lp( n) and ‖∇ηλ‖Lq( ) = λ ‖∇η‖Lq ,R R R

so we should have s0(p, n) = s1(q, n). If we solve for these constants, we have

s0(p, n) = n/p, and s1(q, n) = −1 + n/q.

Theorem 3. If n ≤ p <∞ and the apropriate scaling holds, u ∈ C1(Rn)n−1 c , then

‖u‖Lp ≤ C(p, n)‖∇‖Lq .

Proof. The idea here will be to convert this statement into one that we already know is true (the
Sobolev inequality from last class). Let p = β · n . Since β ≥ 1, |u|β is C1

c . Now, we have thatn−1(ˆ
|u|p
)n−1

n

=
∥∥

(

∥∥|u|β∥∥ n
Ln−1

≤ ‖∇ |u|β)‖L1 [by original Sobolev]

≤ β
ˆ
|u|β−1 · |∇u|

a 1/q

≤ β
(ˆ
|u|p
) (ˆ

|∇u|q
)

.
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So we have that (ˆ )n−1−a (ˆ )1/q
n

|u|p ≤ β |∇u|q .

By scaling, we know that n−1 − a must equal 1/p and q must be the number that makes scalingn
hold.

The only case when no Sobolev inequality holds but the scaling equality holds is the p = ∞ case.
Here, p = ∞ and q = n. Let us give a sketch of an example that shows why ‖u‖L∞ . ‖∇u‖Ln
cannot hold.

Consider u radially symmetrical and u(r)→ 0 as r →∞. Now, we have that

∞
‖u‖L∞ = u(0) =

ˆ
0
|u′(r)| dr (1)

and

‖∇u‖L1 =

ˆ ∞
|u′(r) dr

0
|n · rn−1 . (2)

Our first try at a counterexample might be to take u such that |u′(r)| = 1/r. But this doesn’t quite
work since (1) =∞, but (2) =∞ also. But no worries. We can take something that grows slightly
slower. Let us take u so that |u′(r)| = 1 for 0 r 1/e. Then, we have thatr| log r| ≤ ≤

(1) =

ˆ 1/e 1
dr =

0 r

ˆ ∞ 1
ds =∞

| log r| 1 s

and
1

=

ˆ 1/e

(2) dr = <
r| log r|n

ˆ ∞ 1
ds .

sn0 1
∞

By taking compact cutoffs of this u, we can get that an inequality like ‖u‖L∞ . ‖∇u‖Ln cannot
hold.

There is another kind of scaling that we could consider, and that is Cα scaling. We have then that

[ηλ]Cα = λSH(α)[η]Cα

and we may wonder whether there is a Sobolev inequality with Cα norms.

Theorem 4. If s1(q, n) = sH(α), 0 < α ≤ 1, then for all u ∈ C1(Rn),

[u]Cα ≤ C(α, n)‖∇u‖Lq .
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In the case when n = 1, this problem isn’t too hard (and may have been why Holder developed the
Holder inequality!). We have that

|u(x)− u(y)| ≤
ˆ y

|∇u(s)| · 1 ds

≤
(xˆ
|∇u|q

)1/q
q−1

(|x− y|) q ,

so we get that
[u] q−1

C q
≤ ‖∇u‖Lq .

The general case is a bit harder, and we’ll get to it via the following lemma.

Lemma 5. ∣∣
u(x)−

 
u

Sx(R)

∣∣∣∣ ∣∣ ∣∣ . ‖∇u‖Lq ·Rα.
Proof.

LHS ≤
 

|u(x)− u(x+Rθ)
Sn−1

| dθ

≤
 ˆ R

|∇u(x+ rθ)| dr dθ
Sn−1 0

.
ˆ

|∇u| · r−(n−1) dv
Bx(R)

≤
(ˆ
|∇u|q

)1/q

α

( −

B

) q 1ˆ
r
−(n− q q

1)
q−1

R

= ‖∇u‖Lq ·R .

But this isn’t quite good enough to get the bounds we want. Let us try to perturb it a little bit
and show that not much changes. Let a be the midpoint of x and y, and suppose that |x− y| = R.
Then, we claim that ∣∣∣∣u(x)−

 
u

Sa(R)
∣∣∣∣

ords,

∣ . ‖∇u‖Lq ·Rα.

In other w mo∣ving x to a doesn’t change muc

∣
h. To see this, we notice that∣∣∣u(x)−

 
u

Sa(R) ∣
∣∣∣∣  

∣ ≤ u
Sa(R

|u(x)
)

− (a+Rθ)| dθ

≤
 
Sn−1

(ˆ 2R dθ

0
|∇u(x+ rϕ)| dr

) ∣∣∣∣det
dϕ

∣∣∣∣ dϕ.
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But | dθdϕ | . 1 from the compactness of the sphere, so we have |det dθ
dϕ | . 1 and the bounds we want

hold.

So ∣∣∣∣u(x)−
 

∣ u .
Sa(R)

∣∣∣∣ ‖∇u‖Lq ·Rα

and as a result,
|u(x)− u(y)

∣
| . ‖∇u‖Lq ·Rα,

so [u]Cα . ‖∇u‖Lq .
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