18.156 Lecture Notes

Febrary 25, 2015

trans. Jane Wang

Today, we're continuing our discussion of Sobolev inequalities from last lecture. Recall that last time, we proved the following theorem:

Theorem 1. If $u \in C_{c}^{1}\left(\mathbb{R}^{n}\right)$, then

$$
\|u\|_{L^{\frac{n}{n-1}}} \leq\|\nabla u\|_{L^{1}}
$$

The idea of this proof was that we wrote

$$
\int|u|^{\frac{n}{n-1}} d x_{1} \cdots d x_{n} \leq \int u_{1}^{\frac{1}{n-1}} \cdots u_{n}^{\frac{1}{n-1}} d x_{1} \cdots d x_{n}
$$

where $u_{i}=\int\left|\partial_{i} u\left(x_{1}, \ldots, x_{n}\right)\right| d x_{i}$ and used the Holder inequality and Fubini's theorem a lot of times. Even though this started out seeming a bit daunting, we realized that it wasn't that bad because there were a lot of paths through this mess of Holder/Fubini that led us to the right outcome. Related to what we did is the following theorem.

Theorem 2 (Gen. Loomis-Whitney). If $u_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a function of $x_{1}, \ldots, \hat{x}_{i}, \ldots, x_{n}$ where $u_{j} \geq 0$, then

$$
\int \prod_{j=1}^{n} u_{j}^{\frac{1}{n-1}} \leq \prod_{j=1}^{n}\left(\int u_{j}\right)^{\frac{1}{n-1}}
$$

As a sharp example of this theorem, consider

$$
u_{j}=\prod_{i \neq j} w_{i}\left(x_{i}\right),
$$

where w_{i} only depends on x_{i} and $w_{i} \geq 0$. Now, the left hand side of gen. Loomis-Whitney gives us

$$
\int \prod_{j=1}^{n} u_{j}^{\frac{1}{n-1}}=\int \prod_{j=1}^{n} w_{j}\left(x_{j}\right)=\prod_{j=1}^{n} \int w_{j}
$$

and the right hand side gives us

$$
\prod_{j=1}^{n}\left(\int u_{j}\right)^{\frac{1}{n-1}}=\prod_{j=1}^{n} \prod_{i \neq j}\left(\int w_{i}\right)^{\frac{1}{n-1}}=\prod_{j=1} \int w_{j} .
$$

We can use this sharp example as guidance when we're trying to figure out how to use Holder to give us our Sobolev bounds. For example, let us consider the $n=4$ case of the above Sobolev inequality. We want to know if splitting up

$$
\int\left(\int u_{1}^{1 / 3} u_{2}^{1 / 3} \cdot u_{3}^{1 / 3} u_{4}^{1 / 3} d x_{1} d x_{2}\right) d x_{3} d x_{4}
$$

is a good idea. So let us plug in the u_{i} from our sharp example to get

$$
\int\left(\int w_{2}^{1 / 3} w_{1}^{1 / 3} \cdot\left(w_{1} w_{2}\right)^{1 / 3}\left(w_{1} w_{2}\right)^{1 / 3} d x_{1} d x_{2}\right) w_{3}^{?} w_{4}^{?} d x_{3} d x_{4}
$$

where the question marks are some constants. And if we let $g=w_{1} w_{2}$,

$$
\int g^{1 / 3} g^{2 / 3} \leq\left(\int g\right)^{1 / 3}\left(\int g\right)^{2 / 3}
$$

by Holder's inequality, where we chose the exponents to make this example work out. The idea now is that if at every step of our Holder/Fubini process, we choose exponenets to respect this example, we will probably be fine.

Question: What if we look at $\|\nabla u\|_{L^{q}}$ instead of $\|\nabla u\|_{L^{1}}$ and ask for a similar Sobolev inequality as before?

Recall that we had this issue with scaling. That is, if a Sobolev inequality held, then the exponents should hold up to scaling. Let $\eta \in C_{c}^{\infty}$ and $\eta_{\lambda}(x)=\eta(x / \lambda)$. Then,

$$
\left\|\eta_{\lambda}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}=\lambda^{s_{0}(p, n)}\|\eta\|_{L^{p}\left(\mathbb{R}^{n}\right)} \quad \text { and } \quad\left\|\nabla \eta_{\lambda}\right\|_{L^{q}(\mathbb{R})}=\lambda^{s_{1}(q, n)}\|\nabla \eta\|_{L^{q}},
$$

so we should have $s_{0}(p, n)=s_{1}(q, n)$. If we solve for these constants, we have

$$
s_{0}(p, n)=n / p, \text { and } s_{1}(q, n)=-1+n / q .
$$

Theorem 3. If $\frac{n}{n-1} \leq p<\infty$ and the apropriate scaling holds, $u \in C_{c}^{1}\left(\mathbb{R}^{n}\right)$, then

$$
\|u\|_{L^{p}} \leq C(p, n)\|\nabla\|_{L^{q}} .
$$

Proof. The idea here will be to convert this statement into one that we already know is true (the Sobolev inequality from last class). Let $p=\beta \cdot \frac{n}{n-1}$. Since $\beta \geq 1,|u|^{\beta}$ is C_{c}^{1}. Now, we have that

$$
\begin{aligned}
\left(\int|u|^{p}\right)^{\frac{n-1}{n}} & =\left\||u|^{\beta}\right\|_{L^{\frac{n}{n-1}}} \\
& \leq\left\|\nabla\left(|u|^{\beta}\right)\right\|_{L^{1}}[\text { by original Sobolev }] \\
& \leq \beta \int|u|^{\beta-1} \cdot|\nabla u| \\
& \leq \beta\left(\int|u|^{p}\right)^{a}\left(\int|\nabla u|^{q}\right)^{1 / q} .
\end{aligned}
$$

So we have that

$$
\left(\int|u|^{p}\right)^{\frac{n-1}{n}-a} \leq \beta\left(\int|\nabla u|^{q}\right)^{1 / q}
$$

By scaling, we know that $\frac{n-1}{n}-a$ must equal $1 / p$ and q must be the number that makes scaling hold.

The only case when no Sobolev inequality holds but the scaling equality holds is the $p=\infty$ case. Here, $p=\infty$ and $q=n$. Let us give a sketch of an example that shows why $\|u\|_{L^{\infty}} \lesssim\|\nabla u\|_{L^{n}}$ cannot hold.

Consider u radially symmetrical and $u(r) \rightarrow 0$ as $r \rightarrow \infty$. Now, we have that

$$
\begin{equation*}
\|u\|_{L^{\infty}}=u(0)=\int_{0}^{\infty}\left|u^{\prime}(r)\right| d r \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\|\nabla u\|_{L^{1}}=\int_{0}^{\infty}\left|u^{\prime}(r)\right|^{n} \cdot r^{n-1} d r \tag{2}
\end{equation*}
$$

Our first try at a counterexample might be to take u such that $\left|u^{\prime}(r)\right|=1 / r$. But this doesn't quite work since $(1)=\infty$, but $(2)=\infty$ also. But no worries. We can take something that grows slightly slower. Let us take u so that $\left|u^{\prime}(r)\right|=\frac{1}{r|\log r|}$ for $0 \leq r \leq 1 / e$. Then, we have that

$$
(1)=\int_{0}^{1 / e} \frac{1}{r|\log r|} d r=\int_{1}^{\infty} \frac{1}{s} d s=\infty
$$

and

$$
(2)=\int_{0}^{1 / e} \frac{1}{r|\log r|^{n}} d r=\int_{1}^{\infty} \frac{1}{s^{n}} d s<\infty .
$$

By taking compact cutoffs of this u, we can get that an inequality like $\|u\|_{L^{\infty}} \lesssim\|\nabla u\|_{L^{n}}$ cannot hold.

There is another kind of scaling that we could consider, and that is C^{α} scaling. We have then that

$$
\left[\eta_{\lambda}\right]_{C^{\alpha}}=\lambda^{S_{H}(\alpha)}[\eta]_{C^{\alpha}}
$$

and we may wonder whether there is a Sobolev inequality with C^{α} norms.
Theorem 4. If $s_{1}(q, n)=s_{H}(\alpha), 0<\alpha \leq 1$, then for all $u \in C^{1}\left(\mathbb{R}^{n}\right)$,

$$
[u]_{C^{\alpha}} \leq C(\alpha, n)\|\nabla u\|_{L^{q}} .
$$

In the case when $n=1$, this problem isn't too hard (and may have been why Holder developed the Holder inequality!). We have that

$$
\begin{aligned}
|u(x)-u(y)| & \leq \int_{x}^{y}|\nabla u(s)| \cdot 1 d s \\
& \leq\left(\int|\nabla u|^{q}\right)^{1 / q}(|x-y|)^{\frac{q-1}{q}}
\end{aligned}
$$

so we get that

$$
[u]_{C^{\frac{q-1}{q}}} \leq\|\nabla u\|_{L^{q}} .
$$

The general case is a bit harder, and we'll get to it via the following lemma.

Lemma 5.

$$
\left|u(x)-f_{S_{x}(R)} u\right| \lesssim\|\nabla u\|_{L^{q}} \cdot R^{\alpha} .
$$

Proof.

$$
\begin{aligned}
L H S & \leq f_{S^{n-1}}|u(x)-u(x+R \theta)| d \theta \\
& \leq f_{S^{n-1}} \int_{0}^{R}|\nabla u(x+r \theta)| d r d \theta \\
& \lesssim \int_{B_{x}(R)}|\nabla u| \cdot r^{-(n-1)} d v \\
& \leq\left(\int|\nabla u|^{q}\right)^{1 / q}\left(\int_{B_{R}} r^{-(n-1) \frac{q}{q-1}}\right)^{\frac{q-1}{q}} \\
& =\|\nabla u\|_{L^{q}} \cdot R^{\alpha} .
\end{aligned}
$$

But this isn't quite good enough to get the bounds we want. Let us try to perturb it a little bit and show that not much changes. Let a be the midpoint of x and y, and suppose that $|x-y|=R$. Then, we claim that

$$
\left|u(x)-f_{S_{a}(R)} u\right| \lesssim\|\nabla u\|_{L^{q}} \cdot R^{\alpha} .
$$

In other words, moving x to a doesn't change much. To see this, we notice that

$$
\begin{aligned}
\left|u(x)-f_{S_{a}(R)} u\right| & \leq f_{S_{a}(R)}|u(x)-u(a+R \theta)| d \theta \\
& \leq f_{S^{n-1}}\left(\int_{0}^{2 R}|\nabla u(x+r \varphi)| d r\right)\left|\operatorname{det} \frac{d \theta}{d \varphi}\right| d \varphi .
\end{aligned}
$$

But $\left|\frac{d \theta}{d \varphi}\right| \lesssim 1$ from the compactness of the sphere, so we have $\left|\operatorname{det} \frac{d \theta}{d \varphi}\right| \lesssim 1$ and the bounds we want hold.

So

$$
\left|u(x)-f_{S_{a}(R)} u\right| \lesssim\|\nabla u\|_{L^{q}} \cdot R^{\alpha}
$$

and as a result,

$$
|u(x)-u(y)| \lesssim\|\nabla u\|_{L^{q}} \cdot R^{\alpha},
$$

so $[u]_{C^{\alpha}} \lesssim\|\nabla u\|_{L^{q}}$.

MIT OpenCourseWare
http://ocw.mit.edu

18.156 Differential Analysis II: Partial Differential Equations and Fourier Analysis

 Spring 2016For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

