Lecture Notes for LG's Diff. Analysis

trans. Paul Gallagher

Feb. 23, 2015

1 The Sobolev Inequality

Suppose that $u \in C_{c}^{1}\left(\mathbb{R}^{n}\right)$. Clearly, if $\nabla u=0$, then $u=0$. So, we can ask if ∇u is "small", does this imply that u is small?

Question 1. If $u \in C_{c}^{1}\left(\mathbb{R}^{n}\right)$ and $\int|\nabla u|=1$, is there a bound for $\sup |u|$?
Answer 1. If $n=1$, then this is true by the Fundamental theorem of calculus.

If $n>1$, then we have the following scaling example: Let $\eta \in C_{c}^{1}$ be a fixed smooth bump function. Define $\eta_{\lambda}(x)=\eta(x / \lambda)$. Then $\sup \left(\eta_{\lambda}\right)=\sup (\eta)$, and

$$
\int\left|\nabla \eta_{\lambda}\right| d x=\lambda^{-1} \int|(\nabla \eta)(x / \lambda)| d x=\lambda^{n-1} \int|\nabla \eta|=\lambda^{n-1}
$$

Therefore, we can make the L^{1} norm of the derivative as small as we like, while keeping the L^{∞} norm of the function large.

Theorem 1.1 (Sobolev Inequality). If $u \in C_{c}^{1}\left(\mathbb{R}^{n}\right)$ then $\|u\|_{L^{\frac{n}{n-1}}} \leq\|\nabla u\|_{L^{1}}$.
Remark 1.1. Note that this will not hold true for $p \neq \frac{n}{n-1}$. To see this, suppose that we have $\|u\|_{L^{p}} \leq\|\nabla u\|_{L^{1}}$. As in the scaling example, pick η a smooth bump function, and define η_{λ} as before. Then

$$
\begin{aligned}
\int\left|\eta_{\lambda}\right|^{p} & =\lambda^{n} \int \eta^{p} d x \leq \lambda^{n}\left(\int|\nabla \eta| d x\right)^{p} \\
& =\lambda^{n}\left(\lambda^{-n} \int|(\nabla \eta)(x / \lambda)| d x\right)^{p} \\
& =\lambda^{n}\left(\lambda^{-n+1} \int\left|\nabla \eta_{\lambda}\right| d x\right)^{p} \\
& =\lambda^{n+(1-n) p}\left(\int\left|\nabla \eta_{\lambda}\right| d x\right)^{p}
\end{aligned}
$$

Thus, if $p \neq n /(n-1)$, we can make the right hand side very small simply by making λ either large or small.

Before we prove the Sobolev Inequality, we'll prove a slightly easier problem:

Lemma 1.1. Let $u \in C_{c}^{1}\left(\mathbb{R}^{n}\right), U=\{|u|>1\}$ and $\pi_{j}: \mathbb{R}^{n} \rightarrow x_{j}^{\perp}$. Then $V o l_{n-1}\left(\pi_{j}(U)\right) \leq \int|\nabla u|$.

Proof. WLOG, assume $j=n$. Then

$$
\begin{aligned}
\operatorname{Vol}\left(\pi_{j}(U)\right) & \leq \int_{\mathbb{R}^{n-1}} \max _{x_{n}}\left|u\left(x_{1}, \cdots, x_{n}\right)\right| d x_{1} \cdots d x_{n-1} \\
& \leq \int_{\mathbb{R}^{n-1}} \int_{\mathbb{R}}\left|\partial_{n} u\left(x_{1}, \cdots, x_{n}\right)\right| d x_{n} d x_{1} \cdots d x_{n-1} \\
& \leq \int_{\mathbb{R}^{n}}|\nabla u|
\end{aligned}
$$

Then we can use the Loomis-Whitney theorem which we proved in the homework:

Theorem 1.2 (Loomis-Whitney). If $U \subset \mathbb{R}^{n}$ is open, and $\left|\pi_{j}(U)\right| \leq A$ for all j, then $|U| \leq A^{n /(n-1)}$.

Proof of Sobolev dimension 2. Define

$$
\begin{aligned}
& u_{1}\left(x_{2}\right)=\int\left|\partial_{1} u\left(x_{1}, x_{2}\right)\right| d x_{1} \\
& u_{2}\left(x_{1}\right)=\int\left|\partial_{2} u\left(x_{1}, x_{2}\right)\right| d x_{2}
\end{aligned}
$$

Then $\left|u\left(x_{1}, x_{2}\right)\right| \leq u_{i}\left(x_{j}\right)$. Therefore,

$$
\int u^{2} \leq \int u_{1}\left(x_{2}\right) u_{2}\left(x_{1}\right) d x_{1} d x_{2}=\left(\int u_{1} d x_{2}\right)\left(\int u_{2} d x_{1}\right) \leq\left(\int|\nabla u|\right)^{2}
$$

With this in hand, we can move on to the proof of the Sobolev by induction.

Proof of General Sobolev. Define

$$
u_{n}\left(x_{1}, \cdots, x_{n-1}\right)=\int\left|\partial_{n} u\left(x_{1}, \cdots, x_{n}\right)\right| d x_{n}
$$

Then $|u| \leq u_{n}$. and $\int_{\mathbb{R}^{n-1}} u_{n} \leq \int_{\mathbb{R}^{n}}|\nabla u|$.
We will proceed by induction.

$$
\begin{aligned}
\int_{\mathbb{R}^{n}}|u|^{n /(n-1)} & \leq \int_{\mathbb{R}}\left(\int_{\mathbb{R}^{n-1}}|u| u_{n}^{1 /(n-1)} d x_{1} \cdots d x_{n-1}\right) d x_{n} \\
& \leq \int_{\mathbb{R}}\left[\int_{\mathbb{R}^{n-1}}|u|^{\frac{n-1}{n-2}}\right]^{\frac{n-2}{n-1}}\left[\int_{\mathbb{R}^{n-1}}\left|u_{n}\right|\right]^{1 /(n-1)} d x_{n} \\
& \leq \int_{\mathbb{R}} \int_{\mathbb{R}^{n-1}}|\nabla u| d x_{1} \cdots d x_{n-1} d x_{n}\left(\int_{\mathbb{R}^{n-1}} u_{n}\right)^{1 /(n-1)} \\
& \leq\left(\int|\nabla u|\right)^{n /(n-1)}
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu
18.156 Differential Analysis II: Partial Differential Equations and Fourier Analysis
Spring[2016

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

