
18.156 Lecture Notes

Lecture 7

Lecturer: Larry Guth

Trans.: Cole Graham

February 20, 2015

In Lecture 6 we developed the following continuity method for proving isomorphisms on Banach spaces:

Proposition 1. Let X and Y be Banach spaces, let I be a connected subset of R, and let Lt : X → Y be a

continuous family of operators with t ∈ I. If Lt0 is an isomorphism for some t0 ∈ I, and there exists λ > 0

such that ‖Ltx‖Y ≥ λ ‖x‖X for all x ∈ X and all t ∈ I, then Lt is an isomorphism for all t ∈ I.

We will now use α-Hölder norm estimates related to Schauder’s inequality to establish an isomorphism

theorem for the elliptic Dirichlet problem on discs. Let L be an elliptic operator satisfying the usual hy-

potheses, i.e.

Lu =
∑

aij∂i∂ju
i,j

‖ ‖ ≤ ≤ { } ≤ ∞ ¯ ¯with aij α β and 0 < λ eig( aij ) Λ < . Define the map L : C2,α(B1)→ Cα(B1)×C2,α(∂B1)C (B1)

¯by Lu := (Lu, u|∂B1). The principal result of this lecture is:

¯Theorem 1. If L obeys the usual hypotheses then L is an isomorphism.

We may restate this result as follows:

¯Corollary 1. For all f ∈ Cα(B1) and all ϕ ∈ C2,α(∂B 2,α
1) there exists a unique u ∈ C (B1) such that

Lu = f on B1 and u|∂B1
= ϕ.

¯To establish Theorem 1, we verify that ∆ is an isomorphism, and show that Lt := (1− t)∆ + tL satisfies

the hypotheses of Proposition 1. To prove both these statements we will rely heavily on the following version

of Schauder’s inequality:

Theorem 2 (Global Schauder). Suppose u ∈ C2,α(B1) and L satisfies the usual hypotheses. Let f := Lu

and ϕ := u|∂B1 . Then

‖u‖C2,α ¯(B1) ≤ C(n, α, λ,Λ, β)
[
‖f‖Cα(B1) + ‖ϕ‖C2,α(∂B . (1)

1)

]
The Banach spaces involved in this bound, namely C2,α(B α

1), C (B1), and C2,α(∂B1) motivate the
¯ ¯ ¯definition of the map L. Indeed, we have defined the map L : C2,α(B1)→ Cα(B1)× C2,α(∂B1) because (1)

¯is precisely the form of quantitative injectivity required to apply Proposition 1 to the family Lt. We also use

Theorem 2 to show:
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¯Proposition 2. ∆ is an isomorphism.

¯Proof. From the preceding lecture, it is sufficient to show that ∆ is surjective and satisfies an injectivity

estimate of the form found in Proposition 1. To prove surjectivity, fix f ∈ Cα(B1) and ϕ ∈ C2,α(∂B1).

Extend f to F ∈ Cαc (Rn). Define w := F ∗ Γn, where Γn is the fundamental solution to the Laplacian

considered in earlier lectures. Then w ∈ C2,α(Rn) and ∆w = f on B1. However, there is no reason to

expect that w|∂B1 = ϕ. To rectify this issue, use the Poisson kernel to find v ∈ C2,α(B1) such that ∆v = 0

on B1 and v|∂B1 = ϕ − w|∂B1 . Set u = v + w ∈ C2,α(B1). Then ∆u = ∆v + ∆w = f on B1 and

u| ¯
∂B = v| ¯

1 ∂B1 + w|∂B1 = ϕ. Hence ∆u = (f, ϕ), so ∆ is surjective. Theorem 2 shows that

‖f‖Cα(B ) + ‖ϕ‖C2,α(∂B ) ≥ C(n, α, 1, 1, 1)
1 1

−1 ‖u‖C2,α ¯(B1) ,

so
∥∥∆̄u

∥∥ ≥ λ ‖u‖ ¯for all u ∈ C2,α(B1), with λ = C(n, α, 1, 1, 1)−1 > 0. As we showed in the previous lecture,
¯together with surjectivity this estimate proves that ∆ is an isomorphism.

Proof of Theorem 1. Consider the operator Lt for t ∈ [0, 1]. Because ‖aij‖Cα(B1) ≤ β for all i, j,

‖(1− t)δij + taij‖Cα (1 t) + tβ β(B
′,

1) ≤ − ≤

where β′ := max{β, 1}. Similarly, we must have,

eig({(1− t)δij + taij}) ⊂ [(1− t) + tλ, (1− t) + tΛ] ⊂ [λ′,Λ′],

where λ′ := min{λ, 1} and Λ′ := max{Λ, 1}. Hence the operators Lt obey regularity and spectral bounds

which are uniform in t for t ∈ [0, 1]. Theorem 2 therefore implies that

‖Ltu‖Cα(B ) + ‖u|∂B1
‖C2,α(∂B ) ≥ C(n, α, λ

1

′,Λ′, β′)−1 ‖u
1

‖C2,α ¯(B1)

for all u ∈ C2,α ¯(B1) and all t ∈ [0, 1]. By Proposition 1, this regularity combined with Proposition 2 is

sufficient to establish Theorem 1.

In summary, we used explicit formulæ involving Γn and the Poisson kernel to establish the surjectivity
¯ ¯ ¯of ∆, and then use injectivity bounds furnished by the global Schauder inequality to conclude that ∆ and L

are in fact isomorphisms.

It remains to verify the global Schauder inequality. We will read through the proof and fill in details

for homework. The essential difference between the global and interior Schauder inequalities lies in the

treatment of region boundaries. In the interior Schauder inequality proven previously, C2,α regularity of u

on a ball is controlled by C0 regularity of Lu on a larger ball. Global Schauder replaces regularity on a

larger domain with regularity on the boundary. Unsurprisingly therefore, the proof of global Schauder relies

on a form of Korn’s inequality which accounts for behavior near boundaries:

¯Theorem 3 (Boundary Korn). Let H := {x ∈ Rn; xn > 0} denote the upper half space. Let u ∈ C2,α
c (H)

such that u = 0 on ∂H. Then [∂2u]Cα(H) ≤ C(, α)[∆u]Cα(H).
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As with the standard Korn inequality, the proof of Theorem 3 is divided into two parts:

1. Find a formula for ∂i∂ju in terms of ∆u

2. Bound the integral in the formula to obtain an operator estimate on the map ∆u 7→ ∂i∂ju.

¯To approach the first part of the proof, let u ∈ C2,α
c (H), and extend ∆u to F : Rn → R by setting

F (x1, . . . , xn) = −∆u(x1, . . . , xn ,−1 −xn) when xn < 0.

Proposition 3. u = F ∗ ¯Γn on H.

Proof. Let w = F ∗ Γn. By the symmetry of Γn and the antisymmetry of F in xn, w = 0 when xn = 0.

That is, w vanishes on ∂H. Just as in previous work, w(x) → 0 as |x| → ∞ and ∆w = F on H. Hence

∆(u − w) = 0 on H, u − w = 0 on ∂H, and u − w → 0 as |x| → ∞. Applying the maximum principle to

ever larger semidiscs, we see that u = w on H.

The same arguments from the proof of the standard Korn inequality show that

1
∂i∂ju(x) = lim F (x y)∂i∂jΓn(y) dy + δijF (x)

ε→0+

∫
y n|>ε

−
|

for all x ∈ H. Define the operator TεF (x) :=
∫

F (x− y)∂i∂jΓn(y) dy and integral kernel K := ∂i∂jΓn.|y|>ε
On the homework we will complete the operator norm part of the proof of boundary Korn:

Proposition 4. If F ∈ Cαc (H) + Cαc (H ) (but F is permitted to be discontinuous on ∂H) and−

ε < min{xn, x̄n} with x, x̄ ∈ H, then

|TεF (x)− TεF (x̄)| ≤ α
C(n, α) |x− x̄| ([F ]Cα(H) + [F ]Cα(H )).−

As in the proof of standard Korn, cancellation prop∫ erties of K are crucial to the proof of this operator

estimate. For standard Korn we used the fact that K = 0 for every radius r. This fact is not sufficient
Sr

for boundary Korn, however, because spheres centered at x or x̄ in H will intersect ∂H, where we have no

control on F . To fix this, we note that K enjoys even stronger cancellation:

Proposition 5. If Hr ⊂ Sr is any hemisphere, K = 0.
Hr

Proof. Γn is even, and hence so is its second deriv

∫
ative ∂i∂jΓn = K. The substitution y 7→ −y then shows

that ∫
1

K =
Hr 2

∫
K = 0.

Sr

Now to prove Proposition 4 we may divide the integral TεF (x) into three rough regions:

1. ε < |y| < xn, where K cancels on whole spheres.

2. xn < |y| < R for some large R, which is a bounded region on which K is well-behaved.

3. |y| > R, on which the hemisphere cancellation of K is useful.

The details of the argument are left to the homework.
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