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1 Schauder Estimate

Recall the following proposition:

Proposition 1.1 (Baby Schauder). If 0 < λ
α

≤ aij ≤ Λ, 0 < α < 1,
[aij]C ≤ B, Lu = 0, then

∥u∥C2,α(B1/2) . ∥u∥C2(B1).

We would like to get that C2 norm down to a C0 norm. To do this, we
use the following proposition:

Proposition 1.2. If u ∈ C2(Ω), then for all ϵ > 0,

∥u∥ . ϵ[∂2u] + C ϵ−C2
C2(Ω) Cα(Ω) 1 ∥u∥C0(Ω)

where C1, C2 > 0 depend on Ω and α.

Proof. We will just prove ∥∂2u∥ ≤ RHS.

By scaling, we can assume that ∂2u C0 = 1 and by rotating, we get that
at some point x 2

∥ ∥
0 ∈ Ω ∪ ∂Ω, |∂1u(x0)| = 1.

If [∂2u]Cα(Ω) > ϵ−1 we are done. So assume otherwise. Pick r such that
rαϵ−1 < 1 . Then for all x ∈ B(x 2

0, r),100
|∂1u(x)| ≥ 99/100.
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Now, there exists a segment σ ⊂ Ω of length r in the x1 direction (if not,
just pick r to be smaller). On this segment, ∂1u is monotone. Therefore,
there exists a smaller segment σ1 ⊂ σ of length ≥ r/4 such that on this
segment, |∂1u| ≥ r/5. By the same argument, there exists a still smaller
segment σ2 ⊂ σ1 on which |u(x)| ≥ r2/1000. Therefore,

r2∥u∥∞ ≥ C
1000

≥ ϵ2/α

where C depends only on r (which in turn depends only on Ω). So,
picking C1 = 1/C and C2 = 2/α, we get our desired estimate.

So, we now have that

C∥u∥C2,α(B1/2) ≤ Cϵ∥u∥C2,α(B1) + u
ϵ
∥ ∥C0(B1)

We would like to use a rearrangement trick to get the ∥u∥C2,α(B1) from
the right hand side to the left hand side, but the two norms are over different
balls, so we have to be more clever than that. Towards this, we note the
following simple extension of the baby Schauder estimate.

Proposition 1.3 (Baby Schauder Prime). Given the assumptions of Schauder,
and w ∈ [0, 1/8],

∥u∥ A
C2,α(B 3 ) Cw− u C2(B− 3 )

2w4

≤ ∥ ∥
w4−

for A > 0.

Proof. If we go back through our proof of Baby Schauder, and trace where
the w comes in, we find at the end all that pops out is this power of w. As
expected, as w gets smaller, our estimate gets worse.

Now let’s use this to make our fake rearrangement into an actual rear-
rangement. Define the following function:
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F (w) = ρ(w)∥u C2,α(B3/4−2w)

where ρ is continuous, ρ(0) = 0, and ρ(w) > 0 for w > 0 - the exact
equation for ρ will be determined later. Then certainly F ∈ C0([0, 1/8]),
F (0) = 0, and since F is continuous over a compact interval, F attains its
maximum at some w0 = 0. Our goal will be to prove an upper bound for
F (w0) in terms of ∥u∥C0(B1). Let’s begin.

F (w0) = ρ(w0)∥u∥ ≤ C A
C2,α((B3/4−2w ) ρ(w0)∥u∥C2(B3/4−w )w0

−
0 0

≤ Cρ(w0)w
−A
0 ϵ∥u∥ C2

C2,α(B3/4−w ) + ϵ−
0

∥u∥C0(B1)

A ρ(w0)
/

)
≤ Cϵw0

− F (w0 2) + Cw0
−Aρ(w C2

0)ϵ
−

ρ(w0/2)
∥u∥C0(B1)

≤ Cϵw−A ρ(w0)
0 F (w0) + Cw−A

0 ρ(w0)ϵ
−C2∥u∥C0(B1)ρ(w0/2)

Now, we pick ϵ so that we can legit use rearrangement, that is,

wA

ϵ = 0 ρ(w0/2)

2Cρ(w0)

and so

C

F (w ) ≤ (2C)1+C2
0 w−A−AC2

ρ(w ) 2
0

0 ρ(w0)

(
ρ(w0/2)

)
∥u∥C0(B1).

Thus, if we let ρ(w) = wB for B > 2C2A, we get that

F (w ) ≤ CwK2C2B
0 ∥u∥C0(B1) ≤ C∥u∥C0(B1).

Finally, we have
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1∥u∥C2,α(B1/2) ≤ F (w0) . ∥u∥C0(B
ρ(1/8) 1),

completing our proof of Schauder Regularity.
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2 “Solving” Elliptic PDE

We begin with the Dirichlet problem:

Theorem 2.1. If L obeys the conditions of the Schauder estimate (Proposition
1.1) on B1, ϕ ∈ C2,α(∂B1), then there is a unique u ∈ C2,α(B1) such that
Lu = 0, and u = ϕ on ∂B1.

Note: uniqueness follows from the maximum principle.

History lesson: In the 1800’s, Poisson found an explicit formula if L = ∆:

ϕ(y)
u(x) = (1− |x|2)

∫
dArea

∂B1
|x− y| yn

As setup, consider to Banach spaces X and Y , and L : X → Y a bounded
linear map.

Definition 2.1. L is an isomorphism if there exists L−1 which is bounded
and linear. Equivalently, L is surjective and there exists λ > 0 such that
λ∥x∥X ≤ ∥Lx∥Y .

With this notation, we have

Proposition 2.1. Let L1 : X → Y be an isomorphism with lower bound
λ > 0. Then if ∥L2 − L1∥oper ≤ µ < λ, L2 is also an isomorphism.

Proof. Clearly L2 satisfies the lower bound property, as

∥L2(x)∥ ≥ ∥L2(x)∥ − ∥(L2 − L1)x∥ ≥ (λ− µ)∥x∥

It remains to show that L2 is surjective. Let y ∈ Y . We will use an
iterative procedure to find x such that L2x = y.

Take x1 ∈ X such that L1x1 = y1 = y. Then
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µ∥y − L2x1∥ = ∥y − L1x1 + (L1 − L2)x1∥ ≤ µ∥x1∥ ≤
λ
∥y∥ < ∥y∥

Now iteratively define yj+1 = yj − L2xj and xj = L−1
1 yj. We have that

∥yj+1∥ ≤ µ∥yj∥ and ∥xj∥ ≤ λ ∑1λ
− ∥yj∥, which goes to zero exponentially fast

in j. Thus, we can define x := ∞
j=1 xj, and

∞

L2x =
∑

(yj
j=1

− yj+1) = y1 = y

We immediately get

Corollary 2.1. If Lt : X → Y is a continuous set of operators, and L0 is an
isomorphism and λ∥x∥ ≤ ∥Ltx∥ for all t, then Lt is an isomorphism for all t.

Proof. take a sequence 0 = t0 < t1 < · · · < tfinal such that ∥Ltj+1
−Ltj∥ < λ,

and then apply the previous proposition.
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