Lecture Notes for Diff Anal 2 - Larry Guth - trans. Paul Gallagher - 2/13/15 Recall the following definition of Γ :

$$
\Gamma(x)= \begin{cases}c_{n} \frac{1}{\left.x\right|^{n-2}} & n \geq 3 \\ c_{2} \log |x| & n=2\end{cases}
$$

Note that derivatives of Γ will trivially satisfy $|\nabla \Gamma| \approx|x|^{-n+1}$ and $\left|\partial^{2} \Gamma\right| \approx$ $|x|^{-n}$.

With this notation we have already proven:
Prop 1: If $u \in C_{c}^{4}\left(\mathbb{R}^{n}\right)$ and $\Delta u=f$ then $u=\Gamma * f$.
Prop 2: If $f \in C_{c}^{2}\left(\mathbb{R}^{n}\right)$ and $u=f * \Gamma$ then

$$
\partial_{i} \partial_{j} u=\lim _{\epsilon \rightarrow 0} \int_{|x-y|>\epsilon} f(y) \partial_{i} \partial_{j} \Gamma(x-y) d y+\frac{1}{n} \delta_{i} j f(x)
$$

We now aim to prove
THM 1:

$$
\sum_{u \in C_{c}^{\infty}} \frac{\left\|\partial_{i} \partial_{j} u\right\|_{\infty}}{\|\Delta u\|_{\infty}}=\infty
$$

THM 2 (Korn): For $0<\alpha<1, u \in C_{c}^{2}\left(\mathbb{R}^{n}\right)$,

$$
\left[\partial_{i} \partial_{j} u\right]_{\alpha} \lesssim[\Delta u]_{\alpha}
$$

Because of Prop 1, the general setup for proving THM 1 is the following: Given g, we want to find an f such that

1. $\|f\|_{\infty}=1$
2. $|f * g|(0)=\left|\int f(y) g(-y) d y\right|$ is very large

The best way to do this is clearly to take $f(y)=\operatorname{sgn}(g(-y))$, so that $|f * g|(0)=$ $\int|g(y)| d y$.

For our situation, we have that $g=\partial_{i} \partial_{j} \Gamma$, and so $\int|g| \rightarrow \infty$. Smooth out our choice of f so that it's in $C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$. Therefore, we've proven the following:

Lemma: $\forall i, j, n, B>0, \exists f_{B} \in C_{c}^{\infty}\left(B_{1} \backslash\{0\}\right)$ such that $u_{B}=f_{B} * \Gamma$, and $\left\|f_{B}\right\|_{\infty} \leq 1$ and $\partial_{i} \partial_{j} u_{B}(0)>B$.

Proof of THM 1: Let $w_{B}=u_{B} \eta_{R}$ where η_{R} is a cutoff function which is 1 on $B_{R}, 0$ on $B_{2 R}^{c}$, and satisfies $\left|\partial^{k} \eta_{R}\right|<C_{k} R^{-k}$. Then $\partial_{i} \partial_{j} w_{B}>B$, and

$$
\left|\Delta w_{B}(x)\right| \leq\left|(\Delta u) \eta_{B}\right|+2\left|\nabla u_{B} \cdot \nabla \eta_{R}\right|+\left|u_{B} \partial^{2} \eta_{R}\right|
$$

But since $\left|u_{B}\right| \lesssim|x|^{-n+2}$ and $\left|\nabla u_{B}\right| \lesssim|x|^{-n+1}$, and $|(\Delta u)| \lesssim 1$, and since derivatives of η are bounded, we get that $\left|\Delta w_{B}(x)\right| \lesssim 1$.

Now let's work towards a proof of Korn's theorem. As setup, define

$$
T_{\epsilon} f(x)=\int_{|x-y|>\epsilon} f(y) \partial_{i} \partial_{j} \Gamma(x-y) d y=f * K_{\epsilon}(x)
$$

Then Korn's Theorem can be equivalently expressed as
THM 2': For $f \in C_{c}^{\alpha},\left[T_{\epsilon} f\right]_{\alpha} \lesssim[f]_{\alpha}$
Let's take $x_{1}, x_{2} \in \mathbb{R}^{n},\left|x_{1}-x_{2}\right|=d$ and normalize so $[f]_{\alpha}=1$. Then we want to show that $\left|T_{\epsilon} f\left(x_{1}\right)-T_{\epsilon} f\left(x_{2}\right)\right| \lesssim d^{\alpha}$.

There will be three typical examples to consider, and then a general case will break down into a sum of the examples.

Ex 1: Suppose that f is supported on $B_{3 d / 4}\left(x_{1}\right) \cap B_{3 d / 4}\left(x_{2}\right)$. Then if $y \in \operatorname{supp} f, d \geq\left|x_{i}-y\right| \geq d / 4$. Also, $\sup f \lesssim d^{\alpha}$, because $[f]_{\alpha}=1$. Therefore,

$$
\left|T_{\epsilon} f\left(x_{1}\right)\right|=\left|\int_{d / 4<\left|x_{1}-y\right|<d} f(y) K\left(x_{1}-y\right) d y\right| \lesssim d^{\alpha} \int_{\mathrm{Ann}}\left|x_{1}-y\right|^{-n} d y
$$

Now, $\left|x_{1}-y\right| \gtrsim d$ and $\operatorname{Vol}(A n n) \lesssim d^{n}$, so the whole integral is less than d^{α}. This completes the inequality for this choice of f.

Ex 2: Now suppose that f is supported on $B_{d / 2}\left(x_{1}\right)$. Around x_{2} we can use the same argument as in Ex 1 to get that $\left|T_{\epsilon} f\left(x_{2}\right)\right| \lesssim d^{\alpha}$. However, around x_{1} we need to use the cancellation of the kernel, namely, that

$$
0=\int_{S_{r}} \partial_{i} \partial_{j} \Gamma(y) d y=\int_{S_{r}} K_{\epsilon}(y) d y
$$

Using this, we have that

$$
\begin{aligned}
\left|T_{\epsilon} f\left(x_{1}\right)\right| & \lesssim \int_{B_{d / 2}\left(x_{1}\right)} \frac{\left|f(y)-f\left(x_{1}\right)\right|}{\left|x_{1}-y\right|^{\alpha}} K_{\epsilon}\left(x_{1}-y\right)\left|x_{1}-y\right|^{\alpha} d y \\
& \lesssim \int_{B_{d / 2}\left(x_{1}\right)}\left|x_{1}-y\right|^{\alpha}\left|K_{\epsilon}\left(x_{1}-y\right)\right| d y \\
& \lesssim \int_{\epsilon<\left|x_{1}-y\right|<d / 2}\left|x_{1}-y\right|^{-n+\alpha} \lesssim d^{\alpha}
\end{aligned}
$$

since that last integral is actually doable.

MIT OpenCourseWare
http://ocw.mit.edu
18.156 Differential Analysis II: Partial Differential Equations and Fourier Analysis
Spring[2016

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

