18.156 Lecture Notes Lecture 30

Lecturer: Larry Guth
Trans.: Cole Graham

April 24, 2015

In the past few lectures we focused on solutions to the linear homogeneous Schrödinger equation:

$$
\begin{equation*}
\partial_{t} u=i \Delta u \tag{1}
\end{equation*}
$$

with $u \in C^{2}\left(\mathbb{R}^{d} \times \mathbb{R}\right)$. If u satisfies the initial condition $u(x, 0)=u_{0}(x)$ (for sufficiently well-behaved u_{0}), the solution u is given for all times $t \in \mathbb{R}$ by

$$
u(x, t)=e^{i t \Delta} u_{0}:=\left(e^{i t(2 \pi i \omega)^{2}} \hat{u}_{0}\right)
$$

We have developed a variety of bounds for such solutions, which include:
(A) $\left\|e^{i t \Delta} u_{0}\right\|_{L_{x}^{2}}=\left\|u_{0}\right\|_{L_{x}^{2}}$ for all $t \in \mathbb{R}$.
(B) $\left\|e^{i t \Delta} u_{0}\right\|_{L_{x}^{\infty}} \lesssim|t|^{-d / 2}\left\|u_{0}\right\|_{L_{x}^{1}}$ for all $t \neq 0$.
(C) Interpolation between (A) and (B).

The goal of this lecture is a proof of the following theorem via a combination of $(\mathrm{A}),(\mathrm{B})$, and (C):
Theorem 1 ((Strichartz)). If u solves (1) and $u(x, 0)=u_{0}(x)$,

$$
\begin{equation*}
\left\|e^{i t \Delta} u_{0}\right\|_{L_{x, t}^{\sigma}} \lesssim\left\|u_{0}\right\|_{L_{x}^{2}} \tag{2}
\end{equation*}
$$

where $\sigma=\frac{2(d+2)}{d}$.
To understand the strengths and weaknesses of the bounds we already have, let use consider a few specific cases.

Case 1. $u_{0} \in C_{c}^{\infty}\left(B^{d}(1)\right)$ with $0 \leq u_{0} \leq 1$ and $u_{0}=1$ on $B^{d}\left(\frac{1}{2}\right)$.
We first note that $\left\|u_{0}\right\|_{L_{x}^{p}} \sim 1$ for all $p \in[1, \infty]$. We have shown in previous lectures that qualitiatively $e^{i t \Delta} u_{0}$ will spread out as t evolves forward. For $t \geq 1,|u(x, t)| \sim t^{-d / 2}$ for $|x| \leq t$, and $u(x, t)$ decays rapidly for $|x| \geq t$.
(A) shows that $\left\|e^{i t \Delta} u_{0}\right\|_{L_{x}^{2}} \sim 1$ for all $t \in \mathbb{R}$, which is sharp (it must be sharp, since it's an equality).
(B) shows that $\left\|e^{i t \Delta} u_{0}\right\|_{L_{x}^{\infty}} \lesssim\left|t^{-d / 2}\right|$ for all $t \neq 0$. This is sharp for $|t| \geq 1$, but is pretty useless when $|t|<1$.
(C) has the same effectiveness as (B).

To expand on this example, consider a slightly more general case:
Case 2. $u_{0} \in C_{c}^{\infty}\left(B^{d}(R)\right)$ with $R>0,0 \leq u_{0} \leq 1$, and $u_{0}=1$ on $B^{d}\left(\frac{R}{2}\right)$.
Now (B) and (C) work well for $|t| \geq R^{2}$, but are weak for $t \in\left(-R^{2}, R^{2}\right)$. This weakness stems from "focusing." Any L^{∞} bound on u must account for the possibility that u is focusing, so that u concentrates in a small region with large values at some future time. We have studied such cases before; a standard example is $w_{0}=e^{-i R \Delta} u_{0}$ with the u_{0} from Case 1. Then $\left|w_{0}\right| \sim R^{-d / 2}$ on $B^{d}(R)$, while $\left|e^{i R \Delta} w_{0}\right| \sim 1$ on $B^{d}(1)$. In this situation (B) is sharp for $t \sim R$. The focusing with $\left|e^{i t \Delta} w_{0}\right| \sim 1$ only occurs over a small time interval, say for $t \in[-1,1]$. However, our application of (B) does not prevent focusing from happening over an extended period of time, for instance for all $t \in[R, 2 R]$.

Such a "long focus" is precisely the sort of behavior disallowed by Theorem 1. The L^{σ} bound on space and time may permit a focus during a small subset of times, but not over a large time interval. In fact, (B) already controls the length of the focus in Case 2. If we suppose that $e^{i R \Delta} w_{0}$ is concentrated in $B^{d}(1)$, we may use $e^{i R \Delta} w_{0}$ as initial data in Case 1 to show that $e^{i t \Delta} w_{0}$ will not remain focused when $|t-R| \gtrsim 1$. In other words, we may obtain more information about solutions to (1) by using $e^{i t \Delta} u_{0}$ as initial data in (B) and concluding a bound about $e^{i s \Delta} u_{0}$ for $s \neq t$. The proof of Theorem 1 applies (B) to all such pairs (t, s).

We first recall the L^{2}-unitarity of $e^{i t \Delta}$:
Lemma 2. $\left\langle e^{i t \Delta} f, g\right\rangle_{\mathbb{R}^{d}}=\left\langle f, e^{-i t \Delta} g\right\rangle_{\mathbb{R}^{d}}$.
Proof. By the definition of the L^{2}-inner product on \mathbb{R}^{d} and Plancherel's theorem:

$$
\left\langle e^{i t \Delta} f, g\right\rangle_{\mathbb{R}^{d}}=\int_{\mathbb{R}^{d}} e^{i t \Delta} f \bar{g}=\int_{\mathbb{R}^{d}} e^{i t(2 \pi i \omega)^{2}} \hat{f} \overline{\hat{g}}=\int_{\mathbb{R}^{d}} \hat{f} \overline{e^{-i t(2 \pi i \omega)^{2}} \hat{g}}=\int_{\mathbb{R}^{d}} f \overline{e^{-i t \Delta} g}=\left\langle f, e^{-i t \Delta} g\right\rangle_{\mathbb{R}^{d}}
$$

With this unitarity we may now proceed with the proof of Strichartz:
Proof (Thoremm 1). By duality,

$$
\left\|e^{i t \Delta} u_{0}\right\|_{L_{x, t}^{\sigma}}=\sup _{\|F\|_{L_{x, t}^{\sigma^{\prime}}=1}} \int_{\mathbb{R}^{d} \times \mathbb{R}} e^{i t \Delta} u_{0} \bar{F}
$$

where σ^{\prime} is the dual exponent of σ satisfying $\frac{1}{\sigma}+\frac{1}{\sigma^{\prime}}=1$. By Lemma 2,

$$
\sup _{\|F\|_{L_{x, t}^{\sigma^{\prime}}=1}} \int_{\mathbb{R}^{d} \times \mathbb{R}} e^{i t \Delta} u_{0} \bar{F}=\sup \int_{\mathbb{R}}\left\langle e^{i t \Delta} u_{0}, F_{t}\right\rangle d t=\sup \int_{\mathbb{R}}\left\langle u_{0}, e^{-i t \Delta} F_{t}\right\rangle d t=\sup \left\langle u_{0}, \int e^{-i t \Delta} F_{t} d t\right\rangle
$$

Hence by Cauchy-Schwarz:

$$
\left\|e^{i t \Delta} u_{0}\right\|_{L_{x, t}^{\sigma}} \leq\left\|u_{0}\right\|_{L_{x}^{2}} \sup \left\|\int e^{-i t \Delta} F_{t}\right\|_{F_{x}^{2}}
$$

It therefore suffices to check that

$$
\sup _{\|F\|_{L_{x, t}^{\sigma^{\prime}}=1}}\left\|\int e^{-i t \Delta} F_{t}\right\|_{F_{x}^{2}} \lesssim 1
$$

We prove this separately as its own lemma:

Lemma 3.

$$
\left\|\int e^{-i t \Delta} F_{t}\right\|_{F_{x}^{2}} \lesssim\|F\|_{L_{x, t}^{\sigma^{\prime}}}
$$

Proof.
$\left\|\int e^{-i t \Delta} F_{t}\right\|_{L_{x}^{2}}^{2}=\left\langle\int_{\mathbb{R}} e^{-i t \Delta} F_{t} d t, \int_{\mathbb{R}} e^{-i s \Delta} F_{s} d s\right\rangle=\iint_{\mathbb{R}^{2}}\left\langle e^{-i t \Delta} F_{t}, e^{-i s \Delta} F_{s}\right\rangle d t d s=\iint_{\mathbb{R}^{2}}\left\langle F_{t}, e^{i(t-s) \Delta} F_{s}\right\rangle d t d s$.
This expression effectively measures the interaction between all pairs (t, s), as highlighted earlier. Now if

$$
G(x, t)=\int_{\mathbb{R}} e^{i(t-s) \Delta} F_{s}(x) d s
$$

we may write

$$
\left\|\int e^{-i t \Delta} F_{t}\right\|_{F_{x}^{2}}^{2}=\iint_{\mathbb{R}^{2}}\left\langle F_{t}, e^{i(t-s) \Delta} F_{s}\right\rangle d t d s=\int_{\mathbb{R}}\left\langle F_{t}, \int_{\mathbb{R}} e^{i(t-s) \Delta} F_{s} d s\right\rangle d t=\int_{\mathbb{R}^{d} \times \mathbb{R}} F \bar{G}
$$

By Hölder,

$$
\left\|\int e^{-i t \Delta} F_{t}\right\|_{L_{x}^{2}}^{2} \leq\|F\|_{L_{x, t}^{\sigma^{\prime}}}\|\bar{G}\|_{L_{x, t}^{\sigma}}
$$

Finally, by the Duhamel bound derived in the previous lecture, $\|\bar{G}\|_{L_{x, t}^{\sigma}} \lesssim\|F\|_{L_{x, t}^{\sigma^{\prime}}}$. Hence

$$
\left\|\int e^{-i t \Delta} F_{t}\right\|_{L_{x}^{2}}^{2} \lesssim\|F\|_{L_{x, t}^{\sigma^{\prime}}}^{2}
$$

In fact, Lemma 3 is closely related to the inhomogeneous Schrödinger equation, and is significant enough that it may be restated as its own theorem:

Theorem 4. If $\partial_{t} u=i \Delta u+F$ with $F \in C_{c}^{\infty}\left(\mathbb{R}^{d} \times \mathbb{R}\right)$ and u vanishes before the support of F,

$$
\|u(x, 0)\|_{L_{x}^{2}} \lesssim\|F\|_{L_{x, t}^{\sigma^{\prime}}} .
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.156 Differential Analysis II: Partial Differential Equations and Fourier Analysis

 Spring 2016For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

