
Lecture notes for class on Wednesday, April 22

1. The Strichartz inequality

The goal for the next couple lectures is to understand the Strichartz inequality for
the Schrodinger equation. After that, we will start to study non-linear Schrodinger
equations, and we will see that the Strichartz inequality plays an important role
there.

We stated the Strichartz inequality a couple weeks ago. Let’s recall it.

Theorem 1. (Strichartz, 70’s) Suppose that u(x, t) obeys the Schrodinger equation
on Rd × R, ∂tu = i4u, with initial conditions u(x, 0) = u0(x). Then u obeys the
space-time Ls estimate

‖u‖Ls . ‖u0‖L2
x,t

,

where s = 2(d+2) .
d

The exponent s is the only exponent which is consistent with the scaling uλ(x, t) =
u(x/λ, t/λ2).

Let us recall what the solution to the Schrodinger equation is like. Taking the
Fourier transform of the equation, we see that

∂tû(ω, t) = i(2πi)2|ω|2û(ω, t).

Therefore,

2 2

û(ω, t) = ei(2πi) |ω| tû0(ω).

Therefore u(x, t) is given by the inverse Fourier transform of the right hand side,
which we write as eit4u0:

u(x, t) = eit4
2 2 ∨

u0(x) := ei(2πi) |ω| tû0(ω) (x).

The notation eit4 is suggested because

(
applying the Laplacian

)
in physical space is

equivalent to multiplying in Fourier space by (2πi)2|ω|2. Another intuition for this
notation is that when we write down that eit4u0 satisfies the Schrodinger equation,
we write

∂t(e
it4u0) = i4(eit4u0).

By the way, the solution is defined for all t ∈ R, not just t > 0, and the same
formulas make sense for negative t.
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So far, we have learned two estimates about solutions to the Schrodinger equation.
We write these estimates in terms of the notation eit4u0. First, the L2 norm of a
solution is preserved in time:

‖eit4u0‖L2
x

= ‖u0‖L2
x
.

Second, solutions of the Schrodinger equation obey an L∞ decay estimate:

‖eit4u0‖L∞
x
. |t|−d/2‖u0‖L1

x
.

These two facts play a crucial role in proving the Strichartz inequality, but it is
quite tricky to put them together.

It is probably helpful to keep in mind a couple examples. Suppose that w(x, t)
solves the Schrodinger equation with initial data w0 equal to a smooth bump function
on the unit ball B(1) ⊂ Rd. For times t with |t| & 1, the solution w(x, t) behaves
roughly as follows: |w(x, t)| ∼ t−d/2 on a ball of radius |t|, and decays rapidly for
|x| � |t|. We check that ‖w(x, t)‖2 d d/2 2

L2 ∼ |B (t)| · (t− ) ∼ 1. This example shows
x

that the decay estimate is sharp.
Here is a slightly more interesting example. Fix some large T > 0, and define

v0(x) = w(x,−T ).

We have v(x, t) = w(x, t − T ), so we can easily understand v. In particular
eiT4v0 = w0. The decay estimate is also sharp for v0 and time t = T . Note that
‖v0‖ d

L1
x
∼ |B (T )| · T−d/2 ∼ T d/2. The decay estimate gives that

‖w0‖L∞
x

= ‖eiT4v d/
0‖L∞

x
. T− 2‖v0‖L1 . 1.

Since ‖w0‖L∞
x
∼ 1, the decay estimate used must have been essentially sharp. By

the way, note that ‖eiT4v0‖L∞ is much larger than ‖v0‖L∞ . The function v0 is called
a focusing example. Even though we use the word “decay estimate”, we have to
understand that this can happen – it is an important phenomenon in studying the
Schrodinger equation.

We have two estimates – the conservation of L2 and the decay estimate. Now
that we have proven the interpolation theorem, we can interpolate between these
two estimates.

Proposition 2. For any 0 ≤ θ ≤ 1, define p by

1 1
= (1

p
− θ) · ,

2

and let p′ be the dual exponent. Then we have the following inequality.
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‖eit4u0‖ pL . t−
d
2
·θ‖u0‖ px L

′ .
x

This inequality is essentially sharp for all θ. In fact, both examples above are
sharp: if we take w0 and any |t| ≥ 1, or if we take v p

0 and time t = T , then the L
estimate in the Proposition is sharp up to a constant factor.

This Proposition seems like a good step towards estimating the Lp norm of the
solution on space and time. If we apply this estimate in the simplest way, the
following happens.

‖
d

eit4u0‖p p =
Lx,t R

‖eit4u0‖p pdtLx
≤ t− 2

·θp

R
‖u0‖p p dt.L

′
x

The integral in t never conv

∫
erges. Also we are

∫
particularly interested in ‖u0‖L2

x
,

which forces p = p′ = 2, and we don’t get a global estimate. For t > 0, there is no
fixed time estimate of the form

it

‖eit4u0‖ pLx
≤ C(t)‖u0‖L2

x
.

The reason is that e 4 is an isometric bijection from L2
x to itself. So, given any

function w with ‖w‖L2
x

= 1, we can find u0 with eit4u0 = w and ‖u0‖L2
x

= 1. We
can also find an explicit counterexample by rescaling the focusing example v0 above.
The Strichartz inequality says that

‖eit4u0
R

‖sLsdt
x
. ‖u0‖sL2 ,

x

so although we can’t bound

∫
the integrand at any single value of t, we can still

bound the integral on the left-hand side. The L2-mass of u may focus for a small set
of times t, but the Strichartz inequality shows that it cannot remain focused over a
large set of times.

In some sense, we will prove the Strichartz inequality using the L2 estimate and the
decay estimate, but in a sort-of round about way. This argument involves introducing
some more characters.

2. The inhomogeneous Schrodinger equation

There are several variations of the Strichartz inequality, and Theorem 1 is actually
not the easiest. We start by widening our perspective. We consider the inhomoge-
neous Schrodinger equation

∂tu = i4u+ F.

Here u and F are both functions of x and t. We will write Ft(x) for F (x, t).
Similarly, we will write ut(x) for u(x, t).
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A solution to the inhomogenenous Schrodinger equation is given in the following
proposition.

Proposition 3. (Duhamel formula) If F ∈ C d
comp
∞ (R ×R), then the following func-

tion u solves the inhomogeneous Schrodinger equation:

u =

∫ t

ei(tt
−s)4Fsds.

−∞

Moreover, the function u(x, t) vanishes at all times t “before” the support of F .

Proof. The last claim is easy to check. Suppose that F is supported on Rd× [T1, T2].
If t < T1, then Fs = 0 for all s ∈ [−∞, t], and so ut = 0.

Recall that eit4u0 solves the Schrodinger equation:

∂t
(
eit4u0

)
= i4

(
eit4u0

)
.

So taking the time derivative of ut, we get

t

∂tut = ei(t−s)4F i
s|s=t +

∫
∂t

−∞

(
e (t−s)4Fs

)
ds =

t

= Ft +

∫
i4

−∞

(
ei(t−s)4Fs

)
ds = Ft + i4ut.

�

There is another Strichartz inequality that relates the size of F and the size of u.
This is a cousin of the first Strichartz inequality we stated. It is a little bit easier to
prove, but we will see later that it implies Theorem 1. This theorem is the heart of
the matter.

Theorem 4. (Also Strichartz) Suppose that u obeys the inhomogeneous Strichartz
equation ∂tu = i4u+F , and that u vanishes at times before the support of F . Let s

be the Strichartz exponent s = 2(d+2) as above, and let s
d

′ be its dual exponent. Then

‖u‖Ls
x,t
. ‖F‖Ls′ .

x,t

Proof. We will use the Duhamel formula, and the Lp estimates in Proposition 2. For
any p, we have

‖u‖p p =
Lx,t

∫
R
‖ut‖p pdx.Lx

By Duhamel’s formula and Minkowski’s inequality,
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t t

‖ut‖ i(t s) i(t s)
pLx

=

∥∫
e − 4Fs

−∞

∥
pLx

≤
∫

‖e − 4Fs‖ pLx
.

−∞

As in Propositon 2, let’s

∥∥ ∥∥
suppose that 1

p

∥∥
= (1− θ) · 1 . Applying Proposition 2, we

2

see that

t

‖u ‖ p 2t x
. (t− s)−

d θ
L ‖Fs‖ pL

′ . (1)
−∞ x

The right-hand side is a convolution

∫
which is a little hard to see with all the

notation. We let g(s) = ‖Fs‖ p′ , we let h(s) = ‖us‖ pLx
, and we let α = dθ. Then the

Lx 2

last equation gives

h(t) ≤ g ∗ |t|−α(t). (2)

Note that ‖h‖p = ‖u‖ pL and
x,t

‖g‖p′ = ‖F‖ pL
′ .

x,t

By Hardy-Littlewood-Sobolev, and equation (2), we know that ‖h‖r . ‖g‖q pro-
vided that

1 1
+ 1 = + α.

r q

In particular, ‖h‖p . ‖g‖p′ as long as

1 p d
+ 1 =

− 1
+ θ

p p 2
· .

When we plug in p = s and find the corresponding θ, this equation is satisfied,
and so we get ‖u‖Ls

x,t
. ‖F‖Ls′ as desired. We do the computation with s and θ

x,t

here in the notes for completeness, although I’m not sure if it’s illuminating enough
to include in the lecture.

Recall that p and θ are related by 1 = (1
p

− θ)1 , which yields θ = 1
2

− 2 = p−2 .
p p

Plugging for θ in the last equation, we get

1 p (
+ 1

− 1 d p
= +

− 2)
.

p p 2p

Multiplying through by 2p, we get

2 + 2p = 2(p− 1) + d(p− 2).

4 = d(p− 2).
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4 2(d+ 2)
p = + 2 = = s.

d d
�

Next class, we’ll discuss this proof more, and we’ll see how Theorem 1 follows from
Theorem 4.
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