### 18.156 Lecture Notes

April 17, 2015

trans. Jane Wang

Today, we'll finish up the proof of the Calderon-Zygmund theorem and see some examples.
Part IV: Duality. Recall that we have already proven CZ for $1<p \leq 2$. Now, let $p$ be such that $2<p<\infty$ and let $p^{\prime}$ be the dual exponent (so $1<p<2$ ). Then, we have that

$$
\begin{aligned}
\|T f\|_{p} & =\sup _{\|g\|_{L^{p^{\prime}} \leq 1}} \int T f \cdot g \\
& =\sup \iint f(y) K(x-y) d y g(x) d x \\
& =\sup \int f(y) \int K(x-y) g(x) d x d y \\
& =\sup \int f \cdot(\bar{K} * g) \\
& \leq\|f\|_{p} \cdot \sup \|\bar{T} g\|_{L^{p^{\prime}}} \\
& \lesssim\|f\|_{p},
\end{aligned}
$$

by CZ for $p^{\prime}$. We note here that $\bar{K}(x)$ is defined as $K(-x)$ and $\bar{T} g=g * \bar{K}$. This completes the proof the the Calderon-Zygmund theorem.

Let us look at an application of CZ now. Suppose that $f_{k}: \mathbb{R}^{d} \rightarrow \mathbb{C}$,

$$
\operatorname{supp} \hat{f}_{k} \subset A_{k}=\left\{\omega: 2^{k-1} \leq|\omega| \leq 2^{k+1}\right\}
$$

and $f=\sum f_{k}$. We'll call this condition $\left(^{*}\right)$.


The intuition here is that the $f_{k}$ should be almost independent. That is, knowing that $f_{k}(x) \in[a, b]$ shouldn't tell you that much about the value of $f_{\ell}(x)$ for $\ell \neq k$. If the $f_{k}$ were indeed independent, then

$$
\left|\sum f_{k}\right| \sim\left(\sum\left|f_{k}\right|^{2}\right)^{1 / 2}
$$

with high probability in $x$. The next theorem says that our intuition is pretty much what happens.
Theorem 1 (Littlewood-Paley). If (*) holds, then

$$
\|f\|_{L^{p}} \sim\left\|\left(\sum\left|f_{k}\right|^{2}\right)^{1 / 2}\right\|_{p}
$$

(up to a factor $C(p, d)$ ).

What we'll prove today is the $\lesssim$ in the above theorem. Define

$$
T_{k} g=\left(\psi_{k} \hat{g}\right)^{\vee}
$$

Here, $\psi_{k}$ is a bump function where $\psi_{k}=1$ on $A_{k}$, and is supported on $\tilde{A}_{k}:=\left\{\omega: 2^{k-2} \leq|\omega| \leq\right.$ $\left.2^{k+2}\right\}$. We also want $\psi_{k}$ as smooth as possible, and we can show that we can construct $\psi_{k}$ so that $\left|\psi_{k}\right| \leq 1,\left|\partial \psi_{k}\right| \leq 2^{-k},\left|\partial^{2} \psi_{k}\right| \leq 2^{-2 k}$, and so on. We note that $T_{k} f_{k}=f_{k}$.

Now, we define $\vec{g}=\left(\ldots, g_{-1}, g_{0}, g_{1}, \ldots\right)$ and $\vec{T} \vec{g}=\sum_{k} T_{k} g_{k}$. Note here that $\vec{T} \vec{f}=f$. Then,

$$
|\vec{g}(x)|=\left(\sum_{k}\left|g_{k}(x)\right|^{2}\right)^{1 / 2}
$$

and

$$
\|\vec{g}\|_{p}=\left\|\left(\sum_{k}\left|g_{k}\right|^{2}\right)^{1 / 2}\right\|_{p}=\text { RHS of L-P. }
$$

Theorem 2. $\|\vec{T} \vec{g}\|_{p} \lesssim\|\vec{g}\|_{p}$ for all $1<p<\infty$ implies the previous theorem (by taking $\vec{g}=\vec{f}$ ).

Notice that $T_{k} g_{k}=g_{k} * \psi_{k}^{\vee}$ and

$$
\vec{T} \vec{g}=\vec{g} * \vec{\psi}^{\vee}=\int \vec{g}(y) \cdot \vec{\psi}^{\vee}(x-y) d y=\int \sum_{k} g_{k}(x) \psi_{k}^{\vee}(x-y) d y
$$

In Calderon-Zygmund, our $f$ and $K$ were scalar valued. Now, we have that $\vec{g}, \vec{K}$ are vector valued in $\ell^{2}$. But this turns out not to be an issue since the proof of Calderon-Zygmund applies almost verbatim for vector valued functions.

So to be able to apply Calderon-Zygmund, we need to theck three things:
(i) $\left(\sum_{k}\left|\psi_{k}^{\vee}(x)\right|^{2}\right)^{1 / 2} \lesssim|x|^{-d}$
(ii) $\left(\sum_{k}\left|\partial \psi_{k}^{\vee}(x)\right|^{2}\right)^{1 / 2} \lesssim|x|^{-d-1}$
(iii) $\|\vec{T} \vec{g}\|_{2} \lesssim\|\vec{g}\|_{2}$

Proof. Let's prove each of the three statements above.
(i) We have that $\left|\psi_{k}^{\vee}(x)\right| \leq\left\|\psi_{k}\right\|_{L^{1}} \sim 2^{k d}$ and $\left|\psi_{k}^{\vee}(x)\right| \sim 2^{k d}$ for $|x| \lesssim 2^{-k}$. It also decals rapidly when $|x| \gg 2^{-k}$ by smoothness (which we can prove by integration by parts). So we have that

$$
\sum_{k}\left|\psi_{k}^{\vee}(x)\right|^{2} \lesssim \sum_{|x| \lesssim 2^{-k}} 2^{2 d k}+\text { rapidly decreasing terms } \lesssim|x|^{-2 d} .
$$

Now, we get the bound we want by taking square roots.
(ii) We have that $\left|\partial \psi_{k}^{\vee}(x)\right|=\left|\left(2 \pi i \omega \psi_{k}\right)^{\vee}(x)\right|$. Now, $\left|\omega \psi_{k}\right| \lesssim 2^{k}$ and $\left|\partial\left(\omega \psi_{k}\right)\right| \lesssim 1, \ldots$ so $\left|\partial \psi_{k}^{\vee}(x)\right| \lesssim 2^{k(d+1)}$ on $|x| \lesssim 2^{-k}$ and is rapidly decaying for $|x| \gg 2^{-k}$. Therefore, we have that

$$
\sum_{k}\left|\partial \psi_{k}^{\vee}(x)\right|^{2} \lesssim \sum_{|x| \lesssim 2^{-k}} 2^{2 k(d+1)}+\text { rapidly decreasing terms } \lesssim 2^{-2(d+1)}
$$

Again, we can take square roots to get that bound that we want.
(iii) We have that

$$
\|\vec{T} \vec{g}\|_{2}^{2}=\left\|\sum g_{k} * \psi_{k}^{\vee}\right\|_{2}^{2}=\left\|\sum \psi_{k} \cdot \hat{g}_{k}\right\|_{2}^{2}=\int\left|\sum \psi_{k} \cdot \hat{g}_{k}\right|^{2} .
$$

Note now that for all $\omega$, there are $\leq 4$ nonzero terms in the above sum. So we have that

$$
\|\vec{T} \vec{g}\|_{2}^{2} \lesssim \int \sum_{k}\left|\psi_{k} \hat{g}_{k}\right|^{2} \leq \sum_{k} \int\left|\hat{g}_{k}\right|^{2}=\int \sum_{k}\left|g_{k}\right|^{2}=\|\vec{g}\|_{2}^{2}
$$

Taking square roots give us the bound that we want.

From this lemma and the Calderon-Zygmund theorem, we have the Littlewood-Paley theorem.

MIT OpenCourseWare
http://ocw.mit.edu

### 18.156 Differential Analysis II: Partial Differential Equations and Fourier Analysis

 Spring 2016For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

